Cho x,y là các số nguyên
\(\frac{x^2-1}{2}=\frac{y^2-1}{3}\)
Chứng minh xy chia hết cho 40
cho x, y là các số nguyên dương thỏa mãn \(\frac{x^2-1}{2}=\frac{y^2-1}{3}\) .chứng minh rằng x2 -y2 chia hết cho 40
Giả thiết đã cho có thể viết lại được thành 3x2-2y2=1(1)
Từ đây, ta có x lẻ nên x2chia 8 dư 1 => 3x2 chia 8 dư 3
Từ đo ta có 2y2 chia 8 dư 2
=> y2 chia 8 dư 1. Do đó: x2-y2 chia 8 (2)
Tiếp theo ta sẽ chứng minh x2-y2chia hết cho 5 (3)
Chú ý rằng số dư của a2 (a thuộc Z) khi chia cho 5 là 0;1 và 4
Nếu y2 chia 5 thì từ (1) ta có 3x2 chia 5 dư 1, mâu thuẫn do só dư của 3x2 khi chia 5 chỉ có thể là 0;3;2Nếu y2 chia 5 dư 4 thì từ (1) ta có 3x2 chia 5 dư 4, mâu thuẫnDo đó ta phải có y2 chia 5 dư 1. Khi đó từ (1) ta cũng suy ra x2 chia 5 dư 1. Dẫn đến x2-y2 chia hết cho 5Từ (2) và (3) với chú ý (5;8)=1 ta thu được x2-y2 chia hết cho 40 (đpcm)
1) Cho A=xy(x+y) + yz(y+z) + zx(z+x) +2xyz với x,y,z là các số nguyên lẻ.
Chứng minh A chia hết cho 8
2) Cho A = a+b+c và B = a3 + (b+2020)3 + (c+2021)3 với a,b,c là các số nguyên. Chứng minh A chia hết cho 3 khi và chỉ khi B chia hết cho 3
3) Cho các số thực x,y,z thảo mãn \(0\le x,y,z\le1\). Chứng minh rằng :
\(\frac{x}{1+x+yz}+\frac{y}{1+y+xz}+\frac{z}{1+z+xy}\le\frac{3}{x+y+z}\)
với x;y là số nguyên dương tm:\(\frac{x^2-1}{2}=\frac{y^2-1}{3}\). Chứng minh: x^2-y^2 chia hết cho 40. Gjup mk vs mấy bạn nhé. cảm ơn nkju
cho x,y là các số nguyên thỏa mãn:(x^2+1)chia hết cho(xy +1). Chứng minh (y^2+1) chia hết cho (xy+1)
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 chia hết xy+1
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
Hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 Chia hết xy+1
1. Tính \(\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{17}{3}+\frac{18}{2}+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{19}+\frac{1}{20}}\)
2.Tìm các số nguyên dương x,y sao cho :
a) \(\frac{x}{10}-\frac{1}{y}=\frac{3}{10}\)
b) \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
3.Cho b , b+20 , b+40 là các số nguyên tố. Chứng minh b+10 là số nguyên tố .
4.Lúc đầu số trứng gà bằng số trứng vịt . Sau khi bán 80 quả trứng gà và 70 quả trứng vịt thì số trứng còn lại là 48% tổng số trứng còn lại . Hỏi mỗi loại có bao nhiêu quả ?
5.Chứng minh rằng nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
cho x, y là các số nguyên dương thỏa mãn (x^2-1)/2 = (y^2-1)/3 .Chứng minh x^2 -y^2 chia hết cho 40
1.Chứng minh rằng:
a) Nếu 2a+3b chia hết cho 11 thì 5b+2a chia hết cho 11 và ngược lại.
b) n là số nguyên tố lớn hơn 3 thì n2 là số nguyên tố hay hợp số?
2. Tìm chữ số x và y để: x185y chia hết cho 12
3. Tìm tất cả các số nguyên x và y, biết: \(\frac{1}{2}< \frac{x}{5}< \frac{y}{4}< \frac{3}{5}\)
1.Chứng minh rằng:
a) Nếu 2a+3b chia hết cho 11 thì 5b+2a chia hết cho 11 và ngược lại.
b) n là số nguyên tố lớn hơn 3 thì n2 là số nguyên tố hay hợp số?
2. Tìm chữ số x và y để: x185y chia hết cho 12
3. Tìm tất cả các số nguyên x và y, biết: \(\frac{1}{2}< \frac{x}{5}< \frac{y}{4}< \frac{3}{5}\)
Giúp giải bài này với các bạn ơi.
Cho x, y nguyên khác -1 và \(\frac{x^2-1}{y+1}+\frac{y^2-1}{x+1}\)cũng là số nguyên. Chứng minh rằng : y2x2 - 1 chia hết cho x+1
\(M=\frac{\left(x^2-1\right)\left(x+1\right)+\left(y^2-1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\frac{x^3+x^2-x-1+y^3+y^2-y-1}{xy+x+y+1}\)
\(=\frac{\left(x^3+y^3\right)+\left(x^2+y^2\right)-\left(x+y\right)-2}{xy+x+y+1}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy-\left(x+y\right)-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+x^2\left(x+y\right)+y^2\left(x+y\right)-2xy\left(x+y\right)-2\left(x+y\right)-2xy-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+\left(x^2+y^2-2xy\right)\left(x+y\right)-2\left(x+y+xy+1\right)}{xy+x+y+1}\)
\(=\frac{\left(x+y-2\right)\left(x+y+xy+1\right)+\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}=x+y-2+\frac{\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}\)
x,y nguyên do đó để \(M\)nguyên thì \(\left(x-y\right)^2\left(x+y\right)\)chia hết cho \(xy+x+y+1\)
Dễ thấy \(\left(x-y\right)^2\left(x+y\right)\)không thể phân tích thành nhân tử \(xy+x+y+1\)nữa nên \(\left(x-y\right)^2\left(x+y\right)=0\)
Suy ra:
\(\hept{\begin{cases}x-y=0\\x+y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=-y\end{cases}}\)
Vậy:
\(x^2y^2-1=x^2.x^2-1=x^4-1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)chia hết cho \(\left(x+1\right)\)
Vậy ta có đpcm