1.2+2.3+3.4+.....+98.99
các bạn giúp tớ nhé
ai nhanh mk tick
2.3 x 3.4 + 2.3+5.6 x 2.3 tính bằng cách thuận tiện giúp mk với rồi tớ tick cho to d2.3 x 3.4 + 2.3+5.6 x 2.3 tính bằng cách thuận tiện giúp mk với rồi tớ tick chong cvn gvp
2.3x3,4+2,3x5,6x2,3 =2,3x3,4+2,3x5,6x2,3x1 =2,3x(3,4+5,6+1) =2,3x10 =23
Giải
=2,3 x 3,4 + 2,3 x 5,6 + 23 x 1
= 2,3 x (3,4 + 5,6 + 1)
=2,3 x 10
=23
Tính tổng
A= 3/1.2 + 3/2.3 + 3/3.4 +...+ 3/2018.2019
giúp mik với, gấp lắm. Ai nhanh mk tick
=3*(1/1.2+1/2.3+...+1/2018.2019)
=3(1-1/2+1/2-1/3+...+1/2018-1/2019)
=3(1-1/2019)
=3*2018/2019
=2018/673
\(A=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{2018.2019}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=3.\left(1-\frac{1}{2019}\right)\)
\(=3.\frac{2018}{2019}=\frac{2018}{673}\)
2.3 x 3.4 + 2.3+5.6 x 2.3 tính bằng cách thuận tiện giúp mk với rồi tớ tick cho
2.3x3,4+2,3x5,6x2,3 =2,3x3,4+2,3x5,6x2,3x1 =2,3x(3,4+5,6+1) =2,3x10 =23
= 2.3 + 2.6 + 2.3 + 2.15 + 2.3
= 2.(3+6+3+15+3)
= 2.30
= 60
=2,3 x 3,4 + 2,3 x 5,6 + 23 x 1
= 2,3 x (3,4 + 5,6 + 1)
=2,3 x 10
=23
Bạn nào giúp mk vs:
1.2 + 2.3 + 3.4+...+n.( n+1)
1.2 + 2.3 + 3.4+...+n.( n+1)=A
=>3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))
=>3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)
=>3A=n.(n+1).(n+2)
=> A=n.(n+1).(n+2)\3
Đặt A=1.2 + 2.3 + 3.4+...+n.( n+1)
=>3A=1.2.3+2.3.3+3.4.3+...+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n+1)(n+2)-(n-1).n.(n+2)
=n.(n+1)(n+2)-0
=n.(n+1)(n+2)
=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
C = 1.2 + 2.3 + 3.4 + ... + 99.100
Giúp mình với nhé. Ai trả lời nhanh nhất, mình sẽ tick nhiệt tình
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Bạn rút gọn chéo đi 2 với 2 ,3 với 3 cứ như thế còn mỗi 1/100. k nhé
Ta có: C = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3C=3 (1.2 + 2.3 + 3.4 + ... + 99.100)
=> 3C = 1.2.(3-0)+2.3.(4-1)+....+99.100.(101-98)
=> 3C= 1.2.3-1.2.3+2.3.4-2.3.4+....+99.100.101
=> 3C=99.100.101
=> C=99.100.101/3=333300
Nha bạn
giúp mk câu này nhé!
1.2015 + 2.2014 + 3.2013 +......+ 2015.1 / 1.2 + 2.3 + 3.4 +.......+ 2015.2016
ai nhanh và đúng nhất mk tk
Tìm x biết :
1/1.2+1/2.3/1/3.4+..+1/x.(x+10)=2015/2016
Các bạn ơi giúp mik nha mai mik phải nộp bài rồi.
Bạn nào nhanh và đúng nhất mik sẽ tick nhé!!!
Đề sai nhé phải là x(x+1)
Ta có\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\Leftrightarrow\frac{x}{x+1}=\frac{2015}{2016}\Rightarrow x=2015\)
Vậy \(x=2015\)
Tính giá trị của biểu thức:
A= 9/1.2 +9/2.3 +9/3.4 +....+ 9/98.99 + 9/99.100
Ai nhanh mk tick. Ths
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=\frac{1}{9}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{9}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{9}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{9}.\frac{99}{100}\)
\(A=\frac{11}{100}\)
A = 9/1.2 + 9/2.3 + 9/3.4 +...+ 9/98.99 + 9/99.100
= 9. (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
= 9. (1 - 1/100)
= 9 . 99/100
= 891/100
tính các tổng sau:
A=1.2+2.3+3.4+...+n(n+1)
B=1.2.3+2.3.4+...+n(n+1)(n+2)
C=1.2+3.4+5.6+...+2017.2018
D=1.4+2.5+3.6+...+n(n+3)
Giúp mk nha, ai nhanh mk k!
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.