với giá trị nào của x để biểu thức sau đtạ giá trị lớn nhất
a) A= 11- \(|\frac{2}{3}x+\frac{1}{2}|\)
b) B= 1+\(\frac{2}{1+|2x-1|}\)
các bạn lám đc con nào thì nhanh giúp mình cảm ơn nhìu
1.Cho biểu thức: Q= \(\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\)
a). Thu gọn biểu thức
b) Tìm các giá trị nguyên của x để Q nhận giá trị nguyên
2. Cho biểu thức A =\(\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)với x khác cộng trừ 2
a) rút gọn biểu thức A
b) chứng tỏ rằng với mọi x thỏa mãn -2<x <2, x khác - 1 phân thức luôn có giá trị âm
( các bạn giúp mình nha, cảm ơn nhiều)
Cho biểu thức A=\(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a) Tìm x để giá trị của A được xác định. Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên
Mọi người giúp mình với ạ!! Mình đang rất cần. Chân thành cảm ơn
Bài 1 Tìm x biết :
a)\(2^{x+2}.3^{x+1}5^x=10800\)
b) \(3^{x+2}-3^x=24\)
Bài 2 Tìm giá trị lớn nhất của biểu thức : \(A=\frac{2.\left|7x+5\right|+11}{\left|7x+5\right|+4}\)
Bài 3 :
a) cho \(\frac{a}{c}=\frac{c}{b}\)chứng minh : \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
b) Tìm x để biểu thức sau nguyên \(\frac{5}{\sqrt{2x+1}+2}\)
c) Tìm giá trị nhỏ nhất của biểu thức : B= |x-1| + |x-2017|
d) Tìm giá trị lớn nhất của biểu thức : A= |x-2018| - |x-2017|
AI LÀM ĐƯỢC CÂU NÀO THÌ GIÚP MÌNH VỚI
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
câu 2
cho biểu thức \(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{8}{x^2-4}\right):\frac{x-1}{x-2}\)
a) với giá trị nào của x thì biểu thức đc xác định
b/hãy rút gọn biểu thức A
c/tìm giá trị của x để biểu thức A cs giá trị =1
cho biểu thức
\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)
a) rút gọn biểu thức
b) tính giá trị biểu thức khi x=-1
c) với giá trị nào của x dể x=2
(biến đổi các biểu thức hữu tỉ.giá trị của phân thức)
bạn nào biết giúp mình với
a, = (x+1)^2 / (x+1)(x-1) + (x-1)^2 / (x+1)(x-1) : 2x / 5(x-1)
=2x^2 / (x+1)(x-1) .5(x-1) / 2x
=5(x^2+1) / 2x(x+1)
b, Thay x=1 là đc 5/2
c, Tự lm nha
tìm giá trị của x để các biểu thức sau có nghĩa
a. \(\sqrt{\frac{2-x}{x+1}}\)
b. \(\sqrt{2x-1}+\sqrt{-x}\)
c.\(\sqrt{\frac{x-3}{2}}-\sqrt{\frac{1}{x-2}}\)
bạn nào biết làm giúp mình với nha cảm ơn nhiều
câu 2
cho biểu thức
\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{8}{x^2-4}\right):\frac{x-1}{x-2}\)
a/ với giá trị nào của x thì biểu thức đc xác định
b/ rút gọn biểu thức A
c/tìm giá trị của x để biểu thức A cs giá trị bằng 1
\(\text{Giải}\)
\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{4x^2-16}\right):\frac{x-1}{x-2}\)
\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)
\(A=\left(\frac{\left(x+2\right)\left(2x+4\right)}{\left(2x-4\right)\left(2x+4\right)}-\frac{\left(2-x\right)\left(2x-4\right)}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)
\(A=\left(\frac{2x^2+8x+8}{\left(2x-4\right)\left(2x+4\right)}-\frac{4x^2-8+4x}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)
\(A=\frac{2x^2+8x+8-4x^2+8-4x+32}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)
\(A=\frac{4x-2x^2+48}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)
\(A=\frac{2\left(2x-x^2+24\right)}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{\left(2x-4\right)\left(2x+4\right)\left(x-1\right)}\)
\(=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)\left(x-1\right)}=\frac{2x-x^2+24}{\left(x-2\right)\left(x-1\right)}\)
c, Bạn tự giải hệ pt nhé :)
Bài 1: Tính nhanh giá trị biểu thức
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
Tại x = 100
Bài 2:Cho biểu thức
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức đc xác định
b) CMR khi giá trị của biểu thức đc xác định thì nó không phụ thuộc và biến x
thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)
Bài 2 :
a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)
\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)
\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{8}{5}\)
=> giá trị của B ko phụ thuộc vào biến x
bài 1
=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)
=\(\left(2x+1+2x-1\right)^2\)
=\(\left(4x\right)^2\)
=\(16x^2\)
Tại x=100 thay vào biểu thức trên ta có:
16*100^2=1600000
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)=\left[\frac{x+1}{2.\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2.\left(x+1\right)}\right]\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne\pm1\\x\ne-1\end{cases}\Rightarrow x\pm1}\)
Vậy để B xác định => x=+-1
1. P=\(\frac{4x^{2\:}+4x}{\left(x+1\right)\left(2x-6\right)}\)
a) Tìm điều kiện xác định của P
b) Tìm giá trị của x để P=1
2. P=\(\frac{3}{x+2}+\frac{1}{x-2}-\frac{8}{4-x^2}\)
a) Tìm điều kiện xác định P
b) Rút gọn biểu thức P
c) Tính giá trị của x để P=4
3. P=(\(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\)):\(\frac{2x+1}{x^2+2x+1}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của P khi x=\(\frac{1}{2}\)
Các bạn giúp mình với nha, cảm ơn trước ạ
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.