\(\frac{6^3+3\cdot6^2\cdot3^3}{-13}\)
Cho \(S_1-S_2+S_3-S_4+S_5=\frac{m}{n}\) với m, n nguyên tố cùng nhau. Biết:
\(S_1=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(S_2=\frac{1}{2\cdot3}+\frac{1}{2\cdot4}+\frac{1}{2\cdot5}+\frac{1}{2\cdot6}+\frac{1}{3\cdot4}+\frac{1}{3\cdot5}+\frac{1}{3\cdot6}+\frac{1}{4\cdot5}+\frac{1}{4\cdot6}+\frac{1}{5\cdot6}\)
\(S_3=\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot5}+\frac{1}{2\cdot3\cdot6}+\frac{1}{2\cdot4\cdot5}+\frac{1}{2\cdot4\cdot6}+\frac{1}{2\cdot5\cdot6}+\frac{1}{3\cdot4\cdot5}+\frac{1}{3\cdot4\cdot6}+\frac{1}{3\cdot5\cdot6}+\frac{1}{4\cdot5\cdot6}\)
\(S_4=\frac{1}{2\cdot3\cdot4\cdot5}+\frac{1}{2\cdot3\cdot4\cdot6}+\frac{1}{2\cdot3\cdot5\cdot6}+\frac{1}{2\cdot4\cdot5\cdot6}+\frac{1}{3\cdot4\cdot5\cdot6}\)
\(S_5=\frac{1}{2\cdot3\cdot4\cdot5\cdot6}\)
Tính \(m+n\)
H=\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+5\cdot10\cdot15}{1\cdot3\cdot6+2\cdot6\cdot12+3\cdot9\cdot18+5\cdot15\cdot30}\)= ?
H=\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+5\cdot10\cdot15}{1\cdot3\cdot6+2\cdot6\cdot12+3\cdot9\cdot18+5\cdot15\cdot30}=\frac{1.2.3+2^3.\left(1.2.3\right)+3^3.\left(1.2.3\right)+5^3.\left(1.2.3\right)}{1.3.6+2^3.\left(1.3.6\right)+3^3.\left(1.3.6\right)+5^3.\left(1.3.6\right)}=\frac{1.2.3.\left(1+2^3+3^3+5^3\right)}{1.3.6.\left(1+2^3+3^3+5^3\right)}=\frac{2}{6}=\frac{1}{3}\)
Tính:
a/\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)
b/\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)
c/\(\frac{2^{10}\cdot3^{31}+2^{40}\cdot3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}\)
\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)
\(=\frac{3^{17}\cdot\left(3^4\right)^{11}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^{15}}\)
\(=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)
\(=\frac{\left(3^2\right)^2\cdot2^{11}}{\left(2^4\right)^2\cdot\left(2\cdot3\right)^3}\)
\(=\frac{3^4\cdot2^{11}}{2^8\cdot2^3\cdot3^3}\)
\(=\frac{3^4\cdot2^{11}}{2^{11}\cdot3^3}\)
\(=\frac{3^4}{3^3}\)
\(=3\)
\(\frac{2^{10}\cdot3^{31}+2^{40}\cdot3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}\)
\(=\frac{2^{10}\cdot3^{31}+2^{40}\cdot3^6}{2\cdot\left(2^{10}\cdot3^{31}+2^{40}\cdot3^6\right)}\)
\(=\frac{1}{2}\)
tính nhanh:
\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+4\cdot8\cdot12}{1\cdot3\cdot4+4\cdot6\cdot8+6\cdot9\cdot12+8\cdot12\cdot16}\)
dấu \(\cdot\)là dấu nhân nha!
=\(\frac{6\left(1+8+27+64\right)}{12\left(1+16+54+128\right)}\)
=\(\frac{6.100}{12.199}\)
=\(\frac{50}{199}\)
Tk mình với nha mọi người!!!!!
\(\frac{1x2x3+2x4x6+3x6x9+4x8x12}{1x3x4+4x6x8+6x9x12+8x12x16}\)
\(\frac{6x\left(1+8+27+64\right)}{12x\left(1+16+54+128\right)}=\frac{6x100}{12x199}=\frac{50}{199}\)
x=\(\frac{3^{^2}\cdot6^3\cdot9^6}{2^3\cdot3^{15}}\)
Tình Đ
\(D=\frac{2^{10}\cdot6^{15}+3^{14}\cdot15\cdot4^{13}}{2^{18}\cdot18^7\cdot3^3+3^{15}\cdot2^{25}}\)
Rút gọn
a) B=\(\frac{2^7\cdot9^3}{6^5\cdot8^2}\)
b) C = \(\frac{6^3+3\cdot6^2+3^3}{-13}\)
c) M = \(\frac{2:6^{18}-4^{10}\cdot98}{4^{10}\cdot3^{16}+6^{12}\cdot200}\)
B = \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}\)\(=\frac{2^7.3^6}{2^5.3^5.2^6}\)
Đề có chỉ kêu rút gọn thôi phải k nhỉ?
\(B=\frac{1-3}{1\cdot3}+\frac{2-4}{2\cdot4}+\frac{3-5}{3\cdot5}+\frac{4-6}{4\cdot6}+............+\frac{2011-2013}{2011.2013}+\frac{2012-2014}{2012\cdot2014}-\frac{2013+2014}{2013\cdot2014}\)
Tính A = \(\frac{16^3\cdot10^3+120\cdot6^9}{4^6\cdot3^{12}+6^{11}}\)