So sánh a,b,c biết:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) với a,b,c khác 0
Cho a,b,c là các số tự nhiên khác 0.Hãy so sánh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với số 1
Vì a,b,c là các số tự nhiên khác 0 nên a,b,c > 0.
Do vậy a < a + b < a + b + c
b < b + c < a + b + c
c < c + a < a + b + c
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Cho các số hữu tỉ: \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}\). Biết ad-bc = 1; cn-dm = 1; b,d,n > 0
So sánh y với t biết \(t=\frac{a+m}{b+m}\)với b+n khác 0
Giúp mình với
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a, Cho :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a,b,c khác 0 và a+b+c khác 0 . So sánh a, b, c .
b, Cho : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x,y,z khác 0 ; x + y + z khác 0 . Tính \(\frac{x^{333}.y^{666}}{z^{999}}\)
c, Cho : ac = b2 ; ab = c2 ( a+b+c khác 0 ) . Tính \(\frac{b^{333}}{c^{111}.a^{222}}\)
a, Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
b, Áp dung TCDTSBN ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y = z
Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)
ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Vậy a = b ; a = c ; c = a => a=b=c
b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = z; z = x => x = y = z
\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c,
Theo đề bài:
ac = bb <=> bb/a = c
ab = cc <=> ab/c = c
=> bb/a = ab/c
=> bbc = aab
=> bc = ab
Mà cc = ab => cc = bc => b = c
ac/b = b
cc/a = b
=> ac/b = cc/a
=> aac = bcc
=> aa = bc
Mà bc = cc => aa = cc => a = c
=> a = b = c
\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Cho các số hữu tỉ: \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}\)biết ad - bc = 1; cn - dm = 1; b,d,n>0.
So sánh y với t biết: \(t=\frac{a+m}{b+n}\)với b+n khác 0
Mình xin cảm ơn trước
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
CHO a,b,c,d,e,g\(\in Z\) , BIẾT b,d,g > 0
\(ad-bc=2017\)
\(eg-de=2017\)
A/ SO SÁNH : \(\frac{a}{b}\); \(\frac{c}{d};\frac{e}{g}\)
B/ SO SÁNH : \(\frac{c}{d}\)VỚI \(\frac{a+c}{b+g}\)
cho a,b,c,d,e,g thuộc Z trong đó a,d,g >0, biết ad-bc=2015;cg-de=2015
So sánh a) \(\frac{a}{b},\frac{c}{d},\frac{e}{g}\)
b) So sánh \(\frac{e}{d}với\frac{a+e}{b+g}thuộcN\cdot\)
do ad-bc=2015
=>ad>bc
=>a/b>c/d(1)
cg-de=2015
=>cg>de
=>c/d>e/g(2)
từ (1)và (2)=>a/b>c/d>e/g
1) So sánh
\(\frac{n+1}{n+2}và\frac{n}{n+3}\)
2)a) Cho \(\frac{a}{b}>\frac{c}{d}\)(b,d khác 0). Chứng minh rằng a x d > b x c
b) Cho a x d > b x c(b,d khác 0).Chứng minh rằng \(\frac{a}{b}>\frac{c}{d}\)
Giúp mình với, mình đang cần gấp
Cho các số hữa tỉ x=\(\frac{a}{b}\) y=\(\frac{c}{d}\) z=\(\frac{m}{n}\)
Biết ad-bc=1;cn-dm=1 và b,d,n>0
a) Hãy so sánh các số x,y,z
b) So sánh y và t, biết
t=\(\frac{a+m}{b+n}\) (với b+n khác 0)