Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
THI MIEU NGUYEN
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
tribinh
30 tháng 10 2021 lúc 13:54

số nguyên tố

Khách vãng lai đã xóa
Nguyễn Đăng Khoa
Xem chi tiết
dddddddddddddddddddddddd...
23 tháng 10 2016 lúc 21:05

hop so

Nguyen tien dung
23 tháng 10 2016 lúc 21:11

p là số nguyên tố <3=>p=2

22+2015=4+2015=2019 chia hết cho 3=>p2+2015 là hợp số 

Nguyễn Đăng Khoa
30 tháng 10 2016 lúc 14:26

thank mọi người nhưng mình làm được rùi

lucyylucyy
Xem chi tiết
Diệp Chi
Xem chi tiết
Diệp Chi
23 tháng 3 2020 lúc 10:06

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

Khách vãng lai đã xóa
Fudo
23 tháng 3 2020 lúc 16:27

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

Khách vãng lai đã xóa
Hoàng Duy Khánh TK
Xem chi tiết
I love soccer
2 tháng 4 2018 lúc 21:13

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

Hà Ngọc An Nhiên
Xem chi tiết
Nguyễn Thị Thảo
18 tháng 2 2017 lúc 17:25

Vì p là số nguyên tố lớn hơn 3

=> p là số lẻ

=> p2 là số lẻ

Lại có 2015 là số lẻ

=> p2 + 2015 là số chẵn

Mà 1 số chẵn luôn chia hết cho 2

=> p2 + 2015 chia hết cho 2

Mà 1<2<p2+2015

=> p2 + 2015 là hợp số

Vậy p2 là hợp số với p là số nguyên tố lớn hơn 3.

Tăng Sỹ Phú
17 tháng 2 2017 lúc 15:33

là hợp số

dracula
17 tháng 2 2017 lúc 15:35

là hợp số

Hoàng Ngọc Anh
Xem chi tiết
Trịnh Tiến Đức
30 tháng 10 2015 lúc 19:59

p  là số nguyên tố > 3 

=> p =3k+1 ; 3k+2

Xét p=3k+1 

=> p2+2015

= (3k+1)(3k+1)+2015

= 3k(3k+1)+3k+1+2015

= 3k(3k+1)+3k+2016

Vì 3k(3k+1) ;  3k ; 2016 chia hết cho 3 

=> 3k(3k+1)+3k+2016 chia hết cho 3 

=> p2​+2015 là hợp số 

Xét p =3k+2 

=> p2+2015

= (3k+2)(3k+2) +2015

= 3k(3k+2)+2(3k+2)+2015

= 3k(3k+2)+6k+4+2015

= 3k(3k+2)+6k+2019

Vì 3k(3k+2); 6k ; 2019 chia hết cho 3 

=> 3k(3k+2)+6k+2019 chia hết cho 3 

=> p​2+2015 chia hết cho 3 

=> p2​+2015 là hợp số 

=> p2+2015 luôn là hợp số khi p là số nguyên tố > 3 

Xem chi tiết
the loser
2 tháng 2 2019 lúc 15:56

Do n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

=>n=3k+1 hoặc a=3k+2   (k khác 0)

Xét n=3k+1

=>n^2+2015=9k^2+2+2015=9k^2+2017 (n không chia hết cho 3) (1)

Xét n=3k+2

=>n^2+2015=9k^2+4+2015=9k^2+2019 (n ko chia het cho 3)  (2)

(1)(2)=>n^2 là số nguyên tố

Chu Phuong Anh
2 tháng 2 2019 lúc 16:03

Vì n > 3 nên n có dạng 3k+1 và 3k+2.

TH1: nếu n có dạng 3k+1 thì:

n^2+2015= (3k+1)^2+2015=(3k+1).(3k+1)+2015=(3k+1).3k+3k+1+2015=9k^2.3k+3k+2015

Vì 9k.3k chia hết cho 3

3k chia hết cho 3

2015 không chia hết 3

=> n^2+2015 là số nguyên tố.

TH2:nếu n có dạng 3k+2 thì:

n^2+2015=(3k+2)^2+2015=(3k+2).(3k+2)+2015=(3k+2).3k+(3k+2).2+2015=9k^2+6k+6k+4+2015=9k^2+12k+2019

Vì 9k^2 chia hết cho 3

12k chia hết cho3

2019 chia hết cho 3

=>n^2+2015 là hợp số

Vậy nếu n có dang 3k+1 thì n^2+2015 là số nguyên tố.

       nếu n có dạng 3k+2 thì n^2+2015 là hợp số.

k cho mk nha bạn