Tìm các số nguyên không âm a,b sao cho \(a^2-b^2-5a+3b+4\) là số nguyên tố
bài 1: Cho p là số nguyên tố lớn hơn 3 . chứng minh (p+5)(p+7)chia hết cho 24
Bài 2 :Tìm các số tự nhiên m và n sao cho (2m+1)(2n+1)=91
bài 3: Tìm số nguyên tố p sao cho cả p+4 và p+8 đều là số nguyên tố
Bài 4 :Tìm tất cả các cặp số nguyên tố ( x, y) thỏa mãn đẳng thức x2 - 2y2 =1
bài 5: cho a,b E Z ; a.b khác 0 , chứng minh ( 5a + 3b ; 13a + 8b ) = (a;b)
Bài 6 : Cho a , a+k , a+2k là 3 số nguyên tố lớn hon 3 . chứng minh : K chia hết cho 3
1)hãy tìm
a)số nhỏ nhất có 4 chữ số chia hết cho 2 và 3
b)số nhỏ nhất có bốn chữ số chia hết cho 5 và 9
2)tìm các chữ số a,b sao cho b857a chia hết cho 3 và 4
3)cho a và b là hai số nguyên tố cùng nhau hãy tính
a)UCLN ( 5a+3b ; 13a+8b )
b)UCLN ( 18a+5b ; 11a+3b )
a, Cho a và b là 2 số nguyên tố cùng nhau . Hãy tìm ƯCLN của 5a + 3b và 13a + 8b
b, cho a/b là phân số tối giản . Hãy chứng tỏ rằng phân số 3a+2b / 5a+3b tối giản
tìm các số nguyên tố a,b sao cho
a, ab+1=2a+3b
b, ab-7b+5a=o với b>hoặc bằng 3
a, ta có ab + 1 = 2a + 3b
\(\Leftrightarrow ab-2a-3b+6=5\)5
\(\Leftrightarrow\left(b-2\right)\left(a-3\right)=5\)
mà a , b là số nguyên tố
Nên \(\left(b-2\right)\left(a-3\right)=1.5=5.1\)
<=>b-2=1 và a-3 = 5
hoặc b -2 = 5 và a- 3 = 1
giải nốt nha
1.Cho A=2n-1; B=n(n-1) Chứng minh rằng A và B nguyên tố cùng nhau
2. Cho A và B là 2 số nguyên tố cùng nhau.
Chứng minh A=5a+3b và B=13a+8b là 2 số nguyên tố cùng nhau
Tìm các số nguyên tố a,b sao cho 5a+b và ab +13 cũng là số nguyên tố
CMR:Nếu a và b là 2 số nguyên tố cùng nhau thì : A=8a+3b và B=5a+2b nguyên tố cùng nhau
Bài 1:Cho a,b là số tự nhiên.Chứng minh:WCLN(a.b)=ƯCLN(5a + 2b;7a + 3b)
Bài 2:Cho p và p+4 là các số nguyên tố(p>3).CMR p+14 là hợp số?
Ở bài 1 ƯCLN chứ ko phải là WCLN đâu nha
Gọi x là \(ƯC\left(8a+3b,5a+2b\right)\)
Ta có : \(8a+3b⋮x,5a+2b⋮x\)
\(\Rightarrow8a+3b-5a+2b⋮x\)
\(\Rightarrow2\left(8a+3b\right)-3\left(5a+2b\right)⋮x\)
\(\Rightarrow16a+16b-15a+6b⋮x\)
\(\Rightarrow1a⋮x\)
Vậy \(d=1\)nên \(8a+3b\)và \(5a+2b\)cũng là hai số nguyên tố cùng nhau
Gọi \(d=ƯCLN\)\(\left(8a+3b;5a+2b\right)\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}8a+3b⋮d\\5a+2b⋮d\end{cases}\left(1\right)}\)
\(\Rightarrow\hept{\begin{cases}5\left(8a+3b\right)⋮d\\8\left(5a+2b\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)
\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)
\(\Rightarrow b⋮d\left(2\right)\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2\left(8a+3b\right)⋮d\\3\left(5a+2b\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}16a+6b⋮d\\15a+6b⋮d\end{cases}}\)
\(\Rightarrow\left(16a+6b\right)-\left(15a+6b\right)⋮d\)
\(\Rightarrow a⋮d\left(3\right)\)
Từ \(\left(2\right)\)và \(\left(3\right)\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)
Mà \(\left(a;b\right)=1\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(8a+3b;5a+2b\right)=1\)
\(\Rightarrowđpcm\)