Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Wakanda forever
Xem chi tiết
Nguyễn Anh Dũng An
18 tháng 11 2019 lúc 21:40

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

Khách vãng lai đã xóa
Lê Tài Bảo Châu
18 tháng 11 2019 lúc 21:43

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

Khách vãng lai đã xóa
Lê Tài Bảo Châu
18 tháng 11 2019 lúc 21:49

https://olm.vn/thanhvien/ankhunge

Làm sai rồi ạ

Khách vãng lai đã xóa
you know
Xem chi tiết
you know
3 tháng 8 2018 lúc 10:57

MIN=1=>a=b=c=1

you know
3 tháng 8 2018 lúc 11:42

ta có 

\(\frac{a}{1+2b^3}=\frac{a\left(1+2b^3\right)-2ab^3}{1+2b^3}=a-\frac{2ab^3}{1+2b^3}\)

Vì \(1+2b^3\ge3b^2\left(cosi\right)\)

\(\Rightarrow a-\frac{2ab^3}{a+2b^3}\ge a-\frac{2}{3}ab\)

cmtt ta đc 

P\(\ge a+b+c-\frac{2}{3}\left(ab+bc+ca\right)\)

\(P\ge a+b+c-2\)

mặt khác \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Rightarrow a+b+c\ge3\)

\(\Rightarrow P\ge3-2=1\)

Dấu = xảy ra a=b=c=1

linh mai
Xem chi tiết
Quỳnh Mai
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Thiều Công Thành
9 tháng 9 2017 lúc 22:51

1,

\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)

\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)

lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)

\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

\(\Rightarrow A\ge4+3\sqrt{2}\)

Nguyễn Thiều Công Thành
9 tháng 9 2017 lúc 22:56

câu 2

ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)

\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)

Diệp Song Thiên
Xem chi tiết
Incursion_03
17 tháng 6 2019 lúc 9:46

Áp dụng bđt Cô-si có'

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(1)

Áp dụng bđt trên ta được

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\left(\frac{1}{2a+b+c}\right)^2\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2\)

Chứng minh tương tự rồi cộng các vế lại cho nhau ta được

\(A\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

\(\Rightarrow16A\le\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

               \(=\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\frac{2}{\left(b+c\right)\left(a+b\right)}+\frac{2}{\left(a+c\right)\left(b+c\right)}\)

Đặt \(\left(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\right)\rightarrow\left(x;y;z\right)\)

Khi đó \(16A\le2x^2+2y^2+2z^2+2xy+2yz+2zx\)

Ta có bđt phụ sau : \(xy+yz+zx\le x^2+y^2+z^2\)(tự chứng minh) (2)

Áp dụng ta được

\(16A\le4x^2+4y^2+4z^2=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

\(\Rightarrow4A\le\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\)

Từ (1) \(\Rightarrow\frac{1}{\left(x+y\right)^2}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)(Bình phương 2 vế lên) 

Áp dụng bđt này ta được

\(4A\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)^2+\frac{1}{16}\left(\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow64A\le\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{ac}+\frac{1}{a^2}\)

\(\Rightarrow64A\le\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Áp dụng bđt (2) ta được \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3+3=6\)

\(\Rightarrow A\le\frac{6}{32}=\frac{3}{16}\)
Dấu "=" xảy ra tại a=b=c = 1

T.Ps
17 tháng 6 2019 lúc 9:53

#)Em thấy có link này có cách giải ngắn gọn hơn nek :

https://h.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+th%E1%BB%B1c+d%C6%B0%C6%A1ng+a,b,c+thay+%C4%91%E1%BB%95i+lu%C3%B4n+th%E1%BB%8Fa+m%C3%A3n+1/a2+++1/b2+++1/c2+=3.T%C3%ACm+Max+P+=+1/(2a+b+c)2++1(2b+a+c)2++1/(2c+a+b)2&id=394201

Ai cần link này ib e nhé ! e gửi cho chị #Diệp Song Thiên đã ^^

Kushito Kamigaya
Xem chi tiết
Đinh quang hiệp
20 tháng 6 2018 lúc 21:42

\(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)

\(>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(bđt svacxo)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)

\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ac+ac+bc}+\frac{7}{ab+ac+bc}\)(bđt svacxo)

\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)

\(=\frac{9}{1}+\frac{7}{ab+ac+bc}=9+\frac{7}{ab+ac+bc}\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)

\(=3ab+3ac+3bc=3\left(ab+ac+bc\right)\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot1=\frac{1}{3}>=ab+ac+bc\Rightarrow ab+ac+bc< =\frac{1}{3}\)

\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+7\cdot3=9+21=30\)

\(\Rightarrow A>=30\)dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

vậy min A là 30 khi \(a=b=c=\frac{1}{3}\)

Anna Vũ
Xem chi tiết
Yim Yim
4 tháng 7 2018 lúc 9:34

\(a+bc=a\left(a+b+c\right)+bc=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\)

tương tự :

\(b+ac=\left(b+a\right)\left(b+c\right);c+ba=\left(b+c\right)\left(c+a\right)\)

\(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

áp dụng bất đẳng thức cauchy cho hai số dương 

\(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

\(\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)\)

\(\frac{c}{\sqrt{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{c}{c+a}\right)\)

cộng vế theo vế

\(P\le1\)

Yim Yim
4 tháng 7 2018 lúc 9:36

\(P\le\frac{3}{2}\)

Nguyễn Hoàng Bảo Su
Xem chi tiết