Tìm GTLN hoặc GTNN
2x^2+y^2-2xy-2x+3
2xy+10y-x^2-2y^2-2x
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
\(E=x^2+2y^2-2xy+2x-10y\)
\(E=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-17\)
\(E=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-17\)
\(E=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y-1\\y=4\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(Min_E=-17\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN của
A= -x2 +2xy - 4y2 + 2x + 10y +5
B= -x2 - 2y2 -2xy + 2x - 2y -15
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn