Tìm các số nguyên tố a,b thỏa mãn điều kiện: \(\frac {5}{a}+\frac {b}{3}=\frac {1}{6}\)
Tìm các số nguyên tố a, b thỏa mãn điều kiện: \(\frac{5}{a}\)-\(\frac{b}{3}\)=\(\frac{1}{6}\)
Tìm các số nguyên a,b thỏa mãn điều kiện: \(\frac {5}{a}-\frac {b}{3}=\frac {1}{6}\)\frac {5}{a}
Tìm các số nguyên a,b thỏa mãn điều kiện: \(\frac {5}{a}+\frac {b}{3}=\frac {1}{6}\)
Tìm các số nguyên tố a, b thỏa mãn điều kiện: 5/a - b/3 = 1/6
Tìm các số nguyên a,b khác nhau thỏa mãn điều kiện: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}.\frac{1}{b}\)
Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)
có bổ đề SCP LẺ chia 8 dư 1 do đó:
trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)
\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)
\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)
thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)
đến đây thì đơn giản
\(16ab+1⋮a+b\Leftrightarrow16ab+4a+4b+1=\left(4a+1\right)\left(4b+1\right)⋮a+b\)
\(d=\left(4a+1,a+b\right)\Rightarrow4a+1-4a-4b=1-4b⋮d\text{ hay }4b-1⋮d\Rightarrow\left(4a+1,a+b\right)=1\)
do đó: \(4b+1⋮a+b\Rightarrow4b+1=ka+kb\text{ với k}\le3\)
\(+,k=3\Rightarrow4b+1=3a+3b\text{ hay }b+1=3a\)
k=2 thì 4b+1=2a+2b hay 2b=2a-1
k=1 thì 3b+1=a
tìm các số nguyên dương a,b,c thỏa mãn các điều kiện \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
tìm các số nguyên dương a,b,c thỏa mãn đồng thời các điều kiện \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
1)tìm các số nguyên tố a,b,c sao cho \(^{a^{c-b}}\)+c và \(c^a\)+b đều là số nguyên tố ***************************2)tìm các số nguyên tố a,b,c sao cho a<b<c và b-a, c-b, c-b+a cũng là số nguyên tố ****************************************3)tìm tất cả các số nguyên dương m, n sao cho :a)\(3^m\)- n! = 1 b)\(3^m\) - n! =2***************************************4)cho tong : A= \(\frac{1}{2^3+3}\)+\(\frac{1}{3^3+4}\)+\(\frac{1}{4^3+5}\)+...+\(\frac{1}{2018^3+2019}\).so sánh A với\(\frac{1}{6}\)********************************************5)tìm tất cả các số nguyên n > hoặc = 3 sao cho có thể diền các số thực vào các ô của bảng vuông n*n thỏa mãn đồng thời 2 điều kiện sau: a, tổng các số trong 1 hình vuông 2*2 bất kì là một số dương . 2)tổng các số trong 1 hình vuông 3*3 bất kì là một số âm