Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 11 2017 lúc 8:30

(A) Sai. Góc nội tiếp là góc có đỉnh nằm trên đường tròn, hai cạnh chứa hai dây cung của đường tròn đó.

(B) Sai. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung hoặc chắn hai cung bằng nhau.

(C) Sai. Trong một đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau.

(D) Sai. Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của góc ở tâm cùng chắn một cung.

(E) Đúng. Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

Sách Giáo Khoa
Xem chi tiết
háha
14 tháng 5 2017 lúc 20:37

a , b ,d ,e dung

c sai va dung

nguyenvietphuong
5 tháng 4 2019 lúc 23:01

a,b,d,e đúng

c sai

Kiều Ánh Ngân
Xem chi tiết
Oanh Ma
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 2:36

Giải bài 89 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 89 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 89 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9

huong duong
Xem chi tiết
huong duong
Xem chi tiết
Mạc Hồng Tuấn
Xem chi tiết
Huyền
24 tháng 3 2018 lúc 22:07

cậu ơi cho tớ hỏi tý

ngô xuân kiên
14 tháng 3 2020 lúc 21:25

 Ta có:  ˆACD=900ACD^=900 (góc nội tiếp chắn nửa đường tròn đường kính AD) 

Xét tứ giác DCEF có:

        ˆACD=900ACD^=900 (cm trên)

        ˆEFD=900EFD^=900 (vì EF⊥ADEF⊥AD (gt))

⇒ˆACD+ˆEFD=1800⇒ACD^+EFD^=1800

=> Tứ giác DCEF là tứ giác nội tiếp đường tròn (đpcm).

b) Vì tứ giác DCEF là tứ giác nội tiếp (chứng minh câu a) 

⇒ˆC1=ˆD1⇒C1^=D1^ (góc nội tiếp cùng chắn cung EF) (1)

Mà ⇒ˆC2=ˆD1⇒C2^=D1^ (góc nội tiếp cùng chắn cung AB) (2)

Từ (1) và (2) ⇒ˆC1=ˆC2⇒C1^=C2^

⇒⇒ CA là tia phân giác của ˆBCFBCF^ (đpcm)

k đúng hộ

Khách vãng lai đã xóa
Trần Kiều My
Xem chi tiết
nguyen huyen linh
30 tháng 6 2015 lúc 2:55

b)

 + Xét đt (o) có

      tứ giác BFACN nội tiếp đt

    \(\rightarrow ABC\)=AFC ( 2 góc nt cùng chắn cung AC)

    

  CÓ :  

      BD là tiếp tuyến đt (o) tại B(gt)

       \(\rightarrow\) BD vuông góc BO (TC tiếp tuyến)

       \(\rightarrow\)BD vuông góc BC (O thuộc BC)

        \(\rightarrow\) DBC = 90(dn)

        \(\rightarrow\)tam giác DBC vuông tại B

        xét tam giác vuông DBC cso

          BDC+DCB=90(2 góc phụ nhau trong tg vuông)        (1)

        +Xét đt (o) có: 

             BAC= 90 ( góc nt chắn nửa dtđk BC)
              \(\rightarrow\)tam giác BAC vuông tại A

          Xét tam giác vuông BAC có

                ABC+ACB=90 (2 gọc phụ nhau trong tam giác vuông)

              \(\rightarrow\) ABC+DCB=90(A thuộc DC )                                 (2)

                từ(1) và(2) \(\rightarrow\) BDC=ABC( cùng phụ DCB)

                                       Mà AFC=ABC(CMT) 

                                \(\rightarrow\) BDC=AFC(=ABC)

          +Có :

                 AFC+AFE=180( 2 góc kề bù)

               Mà 2 góc ở vị trí đối nhau 

             \(\rightarrow\) tứ giác DEFA nội tiếp ( DHNB tứ giác nội tiếp)                        

   
 

      

  

 

Nguyễn Ngọc Mi
Xem chi tiết