Tìm giá trị nhỏ nhất của \(x^2+\frac{1}{x^2}+3\)
làm
5. Tìm giá trị nhỏ nhất của B= (x+1)2 + (y+3)2+1
Ai nhanh mk tick cho
ghi rõ cách làm nha
Bài 1 :
a) Tìm giá trị nhỏ nhất của A = l x - 2 l + 5
b) Tìm giá trị nhỏ nhất của B = 12 - l x + 4 l
c) Tìm giá trị nhỏ nhất của C = (căn bậc hai x) + 1
Tìm giá trị của x, y để ;
s = I x + 3 I + I 2y - 14 I + 2016 đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó .
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
cho A=x+1/x^2+x+1
a, tìm giá trị nhỏ nhất của A
b, tiìm giá trị lớn nhất của A
\(\frac{x^2-2x+1995}{x^2}\)Điều kiện \(x\ne0\)
\(=\frac{x^2-2x+1+1994}{x^2}\)
\(=\frac{\left(x-1\right)^2+1994}{x^2}\ge1994\)
\(Min_D=1994\Leftrightarrow x=1\)
1. Tìm giá trị nhỏ nhất của biểu thức P=(x+3)2 + (y-1/3)4 - 4
2. Tìm giá trị lớn nhất của biểu thức Q= \(\frac{7}{\left(3x-2\right)+2016}\)
Tìm giá trị nhỏ nhất của
|x-1 | + | x-2 | + | x -3 |
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(y=\dfrac{x^2+2}{x^2+x+1}\)
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
Tìm giá trị nhỏ nhất của :
A = giá trị tuyệt đối của x - 10 + giá trị tuyệt đối của x -3