Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tân Nguyễn
Bài 1: Cho tam giác ABC (góc A 90o),M là điểm chuyển động trên BC. Vẽ MD vuông góc AB, ME vuông góc AC(D thuộc AB,E thuộc AC). Xácđịnh vị trí của M đễ đoạn thẳng DE có độ dài nhỏ nhất. Bài 2:Cho tam giác ABC, từ A dựng đường thẳng d cắt cạnh AB. Xác định vị trí của d sao cho tổng khoảng cách từ B và C đến d nhỏ nhất, lớn nhất. Bài 3: Cho hình vuông ABCD có cạnh a. Trên hai cạnh AB, AD lần lượt lấy hai điểm là M và N sao cho chu vi tam giác AMN là 2a. Tìm vị trí của M và N sao cho SAMN lớn nhất...
Đọc tiếp

Những câu hỏi liên quan
hiền nguyễn
Xem chi tiết
Phác Trí Nghiên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2018 lúc 3:11

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi H là trung điểm của BC

Suy ra: AH ⊥ BC (tính chất tam giác cân)

Do đó, AM  ≥  AH ( quan hệ đường vuông góc và đường xiên )(dấu " = " xảy ra khi M trùng với H)

Tứ giác ADME là hình chữ nhật .

⇒ AM = DE (tính chất hình chữ nhật)

Suy ra: DE ≥ AH

 

Vậy DE có độ dài nhỏ nhất là AH khi và chỉ khi điểm M là trung điểm của BC.

nguyễn quốc hoàn
Xem chi tiết
nhung nhung
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2017 lúc 6:23

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AH ⊥ BC nên AM ≥ AH (quan hệ đường vuông góc và đường xiên)

Dấu “=” xảy ra khi M trùng với H

Mà DE = AM ( chứng minh trên)

Vậy DE có độ dài nhỏ nhất bằng AH khi M là chân đường vuông góc kẻ từ A đến BC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2018 lúc 9:43

Giải bài 71 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Tứ giác ADME có: Giải bài 71 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ADME là hình chữ nhật

O là trung điiểm của đường chéo DE nên O cũng là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng.

b) Kẻ AH ⊥ BC; OK ⊥ BC.

Ta có OA = OM, OK // AH (cùng vuông góc BC)

⇒ MK = KH

⇒ OK là đường trung bình của ΔMAH

⇒ OK = AH/2.

⇒ điểm O cách BC một khoảng cố định bằng AH/2

⇒ O nằm trên đường thẳng song song với BC.

Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB.

Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

c) Vì AH là đường cao hạ từ A đến BC nên AM ≥ AH (trong tam giác vuông thì cạnh huyền là cạnh lớn nhất).

Vậy AM nhỏ nhất khi M trùng H.

Học toán ngu ngu ấy mà
Xem chi tiết
Nguyễn Hoài Linh
8 tháng 8 2015 lúc 21:44

Bạn chỉ cần chứng minh AEDM là HCN ;O là trung điểm của DE =>O cũng là trung điểm của AM =>O,M,A thẳng hàng
b,
Gọi P ,Q lần lượt là trung điểm của AB,AC
=> giới hạn :
*Khi M trùng với B=> O trùng với P
*Khi M trùng với C=> O trùng với Q
=> I thuộc PQ
c,
Kẻ đường cao AH
Khi M trùng với H thì AM ngắn nhất (quan hệ đường vuông góc và đường xiên)

hoàng thị hồng thảo
Xem chi tiết
Bùi Thị hảo
4 tháng 11 2016 lúc 22:22

bạn nên viết kí hiệu đối với từ vuông góc, góc, độ, tam giác

a)có MD vuông góc với AB(gt)=>góc ADM=90 độ

        ME vuông góc với DM(gt)=>góc MDE=90 độ

có góc ADM=góc DME=góc A=90 độ

=>ADME là hình chữ nhật

mà DE là đường chéo(do AM cắt DE tại O)

=>O là trug điểm

=>A,O,M thag hag

b. vẽ AH và OK vuông góc và đặt AH=a(ko đổi)

trong tam giác AHM có OK là dduong trug binh

=>OK=AH/2=a/2(ko đổi)

Vậy M di chuyen tren BC thi diem O di chuyen tren doan thag d nam trog tam giác ABC và cách cạch chuyền BC 1 khoag =a/2

c.Khi điểm M trung với điểm H, nghĩa là AM=AH thì khi do AM có do dai nho nhatvi duog cao bao gio cung ngan hon cac duog xiên cung xuat phat tu 1 diem den duong thang)

Phuc Pham
Xem chi tiết
Phuc Pham
9 tháng 4 2016 lúc 13:59

giải câu c, d đi