So sánh :\(2015^{a^{a^9}}\)và \(2014^{9^{9^a}}\)với a=123456789
So sánh:
a) A=9^10 và B= ( 8^9+7^9+6^9+...+2^9+1^9)
b) P= 2013/2014 + 2014/2015 + 2015/2016 với Q= 2013+2014+2015 / 2014+2015+2016
So sánh A và B, Biết A=9^2014+1/9^2015+1 và B=9^2015+1/9^2016+1
So sánh:
A=9^2013+1/9^2014+1 và B=9^2014+1/9^2015+1
Ta có:
A=92013+1/92014+1
9A=92014+9/92014+1
=(92014+1/92014+1)+(8/92014+1)
=1+8/92014+1
B=92014+1/92015+1
9B=92015+9/92015+1
=(92015+1/92015+1)+(8/92015+1)
=1+8/92015+1
Vì 8/92014+1 > 8/92015+1 nên A>B
**** bạn
So sánh hai phân số :
a)A = 10^9+5/10^9-2 và B = 10^9/10^9-7
b)2015/2014 và 2016/2017
So sánh A và B biết: A= \(\frac{9^{2014}+1}{9^{2015}+1}\); B= \(\frac{9^{2015}+1}{9^{2016}+1}\)
\(9A=\frac{9\left(9^{2014}+1\right)}{9^{2015+1}}=\frac{9^{2015}+9}{9^{2015}+1}=\frac{9^{2015}+1+8}{9^{2015}+1}=1+\frac{8}{9^{2015}+1}\)
\(9B=\frac{9\left(9^{2015}+1\right)}{9^{2016+1}}=\frac{9^{2016}+9}{9^{2016}+1}=\frac{9^{2016}+1+8}{9^{2016}+1}=1+\frac{8}{9^{2016}+1}\)
Ta thấy \(9^{2016}+1>9^{2015}+1\Rightarrow\frac{8}{9^{2016}+1}<\frac{8}{9^{2015}+1}\)
suy ra 9A >9B
Vậy A > B
nghĩ đi nhé , giải ra thì k còn thú vị nữa , ^_^ còn k thì 15 ' sau pm mình giải cho
Nghĩ nhé , nếu k nghĩ ra 15' sau pm mình giải cho ^_^
GIÚP MÌNH VỚI CÁC BẠN ƠI !
BÀI 1:
Cho A =1/5+1/5^2+1/5^3+...+1/5^99+1/5^100
a.Tính A?
So sánh A với 1/4
BÀI 2 :
So sánh :
a. A=9/a^2014+7/a^2014 và B=8/a^2014+8/a^2013 với A thuộc N*
b . So sánh A và B với A=10^2009+1/10^2010+1 và B=10^2010+1/10^2011+1
c . So sánh A=10^2016+1/ 10^2015+1 ; B=10^2015+1/10^2014+1
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
So sánh A và B biết :
A = a^a^9
B = 9^9^a
a = 123456789
thank you
So sánh A và B biết :
A = a^a^9 = a9.a
B = 9^9^a = 99.a
Đây là hai lũy thừa cùng số mũ
mà a = 123456789 > 9 suy ra A > B nhé
\(A=\frac{2014^{2015}+2}{2014^{2016}+9}\) \(B=\frac{2014^{2016}+2}{2014^{2017}+9}\)
SO SÁNH A VÀ B
\(A=\frac{2014^{2015}+2}{2014^{2016}+9}\)
\(2014A=\frac{2014\left(2014^{2015}+2\right)}{2014^{2016}+9}=\frac{2014^{2016}+4028}{2014^{2016}+9}=\frac{\left(2014^{2016}+9\right)+4019}{2014^{2016}+9}=\frac{2014^{2016}+9}{2014^{2016}+9}+\frac{4019}{2014^{2016}+9}=1+\frac{4019}{2014^{2016}+9}\)
\(B=\frac{2014^{2016}+2}{2014^{2017}+9}\)
\(2014B=\frac{2014\left(2014^{2016}+2\right)}{2014^{2017}+9}=\frac{2014^{2017}+4028}{2014^{2017}+9}=\frac{2014^{2017}+9+4019}{2014^{2017}+9}=\frac{2014^{2017}+9}{2014^{2017}+9}+\frac{4019}{2014^{2017}+9}=1+\frac{4019}{2014^{2017}+9}\)
Ta thấy:
\(2014^{2016}+9< 2014^{2017}+9\)
\(\Rightarrow\frac{4019}{2014^{2016}+9}>\frac{4019}{2014^{2017}+9}\)
\(\Rightarrow1+\frac{4019}{2014^{2016}+9}>1+\frac{4019}{2014^{2017}+9}\)
\(\Rightarrow A>B\)
Vậy ....
So sánh A và B biết :
A =\(\frac{9}{a^{2015}}+\frac{7}{a^{2014}}\) ; B =\(\frac{8}{a^{2014}}+\frac{8}{a^{2015}}\)