CHO TAM GIÁC ABC TỪ M BẤT KÌ NẰM TRONG TAM GIÁC KẺ MH,MI,MK LẦN LƯỢT VUÔNG GÓC VỚI AB,AC,BC . CMR AH^2+BK^2+CI^2=AI^2+BH^2+CK^2
Cho tam giác ABC. Lấy điểm M tùy ý trong tam giác. Kẻ MH, MI, MK lần lượt vuông góc với AB. AC. BC. Chứng minh rằng:
\(AI^2+BH^2+CK^2=AH^2+BK^2+CI^2\)
Cho\(\Delta ABC\),lấy M tùy ý trong tam giác ,kẻ MH,MI,MK lần lượt vuông góc với AB,AC,BC.Chứng minh \(AI^2+BH^2+CK^2=AH^2+BK^2+CI^2\)
Giúp em với
B1:Tam giác ABC vuông tại A. điểm M bất kì trong tam giác. Từ M kẻ MI;ME;MK lần lượt vuông góc với BC:AC;AB.Tìm vị trí của M để MI^2+ME^2+MK^2 min
B2:Cho tam giác ABC vuong tạo A.Trên AB,BC,CA lấy K;M;N sao cho tam giác MNK vuông cân tại K. kẻ MH vuông góc với AB=H.
1,CMR tam giác AMK=tam giác AKN
2,Xác định K;M;N để diện tích tam giác K;M;N nhỏ nhất
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH
Cho tam giác đều ABC.lấy điểm M nằm bất kì từ M lần lượt hạ đường cao MH,MH vuông góc với AB,MI vuông góc với BC,MK vuông góc với AC.hãy chứng tor MH + MK + MI = AG ( AG là chiều cao của tam giác ABC )
Em tham khảo tại đây nhé:
Câu hỏi của Nguyễn Văn Hòa - Toán lớp 7 - Học toán với OnlineMath
Ta thấy ngay MI + MJ + MK = AH (AH là chiều cao tam giác ABC)
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC, CK vuông góc với AB (H∈AC, K∈AB). Biết AB=10cm; AH=6cm
a,Tính BH,BC
b, Chứng minh 2 tam giác ABH, ACK bằng nhau c, Lấy điểm D bất kì nằm giữa B và C. Gọi E, F theo thứ tự là hình chiếu của điểm D trên AC và AB. Tính DE+FE ( E cần mn giải hộ e câu c)
Cho tam giác ABC có AB = 9cm, BC = 15 cm , AC = 12 cm
1) cm tam giác abc là tam giác vuông.
2) vẽ trung tuyến am , kẻ mh vuông góc ac . Trên tia đối mh lấy k sao cho mk=mh . Cm tam giác bkm = tam giác chm. Từ đó cm Bk // Ac .
3) cm bk = ah.
4 ) bh cắt am tại g . Cm g là trọng tâm tam giác abc.
5) Kẻ mi vuông góc ab tại i .cm c,g,i thẳng hàng
Câu 1: Cho tam giác đều ABC, cạnh bằng 3cm. M là 1 điểm bất kì nằm trong tam giác. Qua M kẻ đương thẳng song song với AB, BC, AC. Chúng cắt BC, CA, AB lần lượt tại A', B', C'. Tính MA'+MB'+MC'
Câu 2: Cho tam giác vuông ABC vuông cân tại A, M là trung điểm của BC. Lấy điểm D bất kì trên cạnh BC, H và I lần lượt là hình chiếu của B, C xuống cạnh AD. Tính tỉ số BC^2/(BH^2+CI^2)
TRẢ LỜI HỘ NHA ^-^
câu 1 : Cho tam giác ABC nhọn có AB<AC kẻ AH vuông góc với BC(H thuộc BC) . Gọi M là điểm nằm giữa A và H , tia BM cắt AC ở D .C/m :DM<DH
câu 2 : Cho tam giác ABC
a, Từ A hạ AH vuông góc với BC(H thuộc BC) C/M AH<(AB+AC)/2
b, Từ B hạ BK vuông góc với AC ( K thuộc AC). TỪ C hạ CI vuông góc với AB(I thuộc AB) C/M AH+BK+CI nhỏ hơn chu vi tam giác ABC
AI LÀM ĐÚNG VÀ NHANH NHẤT MÌNH TICK CHO Ạ .MÌNH CẦN GẤP LẮM Ạ .TKS!
cho tam giác ABC, góc B=90 độ, AB=BC. trung tuyến B, D là điểm nằm bất kỳ thuộc AC. Kẻ AH,CK song song với BD(H,K thuộc BD)
CMR: a, BH=CK
b,tam giác MHK vuông và MH=MK
vẽ hình ra tự làm đi dễ lắm nghĩ một tí là ra