Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ZzZ Sojeon II Công Chúa...
Xem chi tiết
Kurosaki Akatsu
4 tháng 2 2017 lúc 21:43

Ta có :

14a + 12b

= (17a - 3a) + (17b - 5b)

= 17a - 3a + 17b - 5b

= 17a + 17b - (3a + 5b)

= 17.(a + b) - (3a + 5b)

Vì 17.(a + b) chia hết cho 7

Đồng thời  3a + 5b chia hết cho 7

=> 14a + 12b  chia hết cho 7

nguyenvankhoi196a
6 tháng 11 2017 lúc 6:28

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

phạm thị bích huyền
Xem chi tiết
Lê Minh Anh
25 tháng 8 2016 lúc 9:20

Xét hiệu: 3(a + 2b) - (3a - 4b) = 3a + 6b - 3a + 4b = 10b chia hết cho 5.         (1)

Mặt khác: (a + 2b) chia hết cho 5  => 3(a + 2b) cũng chia hết cho 5                (2)

Từ (1) và (2) ta có: (3a - 4b) chia hết cho 5.

Trần Mai Linh
25 tháng 8 2016 lúc 9:23

Ta có (a+ 2b) chia hết cho 5.

Suy ra a+b+b tận cùng bằng 0,5.

Suy ra 2b = 0 ( số chẵn)

Xét 2TH

TH1 a có tận cùng = 0 suy ra 3a có tận cùng = 0

4b=2b*2 có tận cùng =0 (1)

TH2 a có tận cùng là 5 suy ra 3a có tận cùng = 5

4b=2b*2 có tận cùng =0 (2)

Từ 1 và 2 suy ra nếu (a+2b) chia hết cho 5 thì (3a -4b) chia hết cho 5

Ngocminh Vu
Xem chi tiết
hoang nguyen truong gian...
31 tháng 12 2015 lúc 14:25

+ a - b chia hết cho 5

Mà 5b chia hết cho 5

=> a - b - 5b chia hết cho 5

=> a - 6b chia hết cho 5

 

hoang nguyen truong gian...
31 tháng 12 2015 lúc 14:27

+) a - b chia hết cho 5 => 2a - 2b chia hết cho 5

Mà 5b chia hết cho 5 

=> 2a - 2b - 5b chia hết cho 5

=> 2a - 7b chia hết cho 5

hoang nguyen truong gian...
31 tháng 12 2015 lúc 14:29

+) a - b chia hết cho 5 => 21a - 21b chia hết cho 5 

Mà 5a chia hết cho 5; 2000 chia hết cho 5

=> 21a + 5a - 21b + 2000 chia hết cho 5

=> 26a - 21b + 2000 chia hết cho 5

Na'Ss Nguyễn
Xem chi tiết
nguyenvankhoi196a
6 tháng 11 2017 lúc 6:26

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

nguyễn thùy linh
2 tháng 12 2017 lúc 12:32

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

Diệp Băng Dao
2 tháng 1 2022 lúc 17:04

Ta có : 83a + 38b chia hết cho 17

Suy ra : 17a +83a + 38b + 17b chia hết cho 17

Suy ra 100a +55b chia hết cho 17

Suy ra 5×(20a +11b ) chia hết cho 17

Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17) 

Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17

Sư Phụ Sơn Tùng 6a
Xem chi tiết
Vũ Vân Anh
Xem chi tiết
Hoàng Phương Trang
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Hoàng Anh Tuấn
20 tháng 8 2015 lúc 20:23

ta có : 10a + 10b : hết cho 5

=> 7a + 3a + 8b + 2b : hết cho 5

=> ( 7a + 8b)  + ( 3a + 2b) : hết cho 5

mà 7a + 8b : hết cho 5

=> 3a + 2b : hết cho 5

 

Vũ Tô Phương Linh
22 tháng 7 2017 lúc 23:04

(7a + 3a)+ (8b+2b)

=> 10a + 10b =>10: 5=2

=>3a + 2b : hết cho 5

Nguyễn Ngọc Bích
Xem chi tiết
nguyenvankhoi196a
6 tháng 11 2017 lúc 6:28

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60