Cho A= 1+3+5+.....+ ( 2n+1) (x thuộc N).Chứng Minh Rằng A là số chính phương
Cho A=1+3+5+7+...+(2n-1) (n thuộc N*)
Chứng minh rằng A là số chính phương.
số các số hạng là:
(2n-1-1):2+1=n(số)
tổng A là:(2n-1+1)n:2=n.n=n2 là số chính phương
=>A là số chính phương
=>đpcm
Cho A=1+3+5+7+...+(2n-1) (n thuộc N*)
Chứng minh rằng A là số chính phương.
chứng minh rằng :
a) S = 1 + 3 +5 +7 + ... + 2n - 1 với n thuộc N* là số chính phương .
b) S = 2 +4 +6 + ... + 2n với n thuộc N* không phải là số chính phương
a) Cho A= 1+3+5+7+...+ ( 2n +1) Với n thuộc N
chứng tỏ rằng A là số chính phương.
b) Cho B= 2+4+6+8+...+2n Với n thuộc N
số B có thể là số chính phương không ?
a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)
=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=> A là số chính phương
b) B có số số hạng là : (2n-2):2+1= n (số)
=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)
=> B không là số chính phương.
A có số số hạng là:
(2n+1-1):2+1=n+1(số)
=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=>A là số chính phương
Chứng tỏ rằng A là một số chính phương biết rằng A 1 3 5 7... 2n 1 với n thuộc N cho cách làm nữa nha
\(A_n=1+3+5+7+...+2n-1\)
\(A_1=1=1^2\)
\(A_2=1+3=2^2\)
Ta sẽ chứng minh \(A_n=n^2\).(1)
(1) đúng với \(n=1\).
Giả sử (1) đúng với \(n=k\ge1\)tức là \(A_k=k^2\).
Ta sẽ chứng minh (1) đúng với \(n=k+1\) tức là \(A_{k+1}=\left(k+1\right)^2\)
Thật vậy, ta có: \(A_{k+1}=1+3+5+...+2k-1+2\left(k+1\right)-1\)
\(=A_k+2\left(k+1\right)-1=k^2+2k+1=k^2+k+k+1=\left(k+1\right)^2\)
Ta có đpcm.
Vậy \(A_n=n^2\)là số chính phương.
giúp mình với mọi người ơi!!! Khẩn cấp!!!
1. Cho x,y thuộc N. Chứng minh rằng (x + 2y chia hết cho <=> (3x -4y) chia hêt cho 5
2. Viết liên tiếp số 2a1 (2007 lần) ta đc số chia hết cho 11. Tìm a
3. Chứng minh rằng một số chính phương hoặc chia hết cho 4 hoặc chia 4 dư 1
4. Chứng minh rằng nếu n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24.
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
a)Tính tổng A = 1^2 + 2^2 + 3^2 +...+ 10^2
b) Chứng minh rằng M là số chính phương biết rằng: M = 1+3+5+...+ ( 2n - 1 ) với n thuộc N
trò gì mà vừa đi vừa chjy
a)Tính tổng A = 1^2 + 2^2 + 3^2 +...+ 10^2
b) Chứng minh rằng M là số chính phương biết rằng: M = 1+3+5+...+ ( 2n - 1 ) với n thuộc N
a) (Em xem lại , câu này em hỏi rồi nhé)
A = 1.1 + 2.(1 + 1) + 3. (1 + 2) + ...+ 10.(1 + 9)
A = 1 + 2 + 1.2 + 3 + 2.3 + ...+ 10 + 9.10
A = (1 + 2+ 3 + ...+ 10) + (1.2 + 2.3 + ...+ 9.10)
Tính 1 + 2 + 3 + ...+ 10 = (1 + 10).10 : 2 = 55
B = 1.2 + 2.3 + ...+ 9.10
3.B = 1.2.3 + 2.3.(4 - 1) + ...+ 9.10.(11- 8) = 1.2.3 + 2.3.4 - 1.2.3 + ...- 8.9.10 + 9.10.11
3.B = (1.2.3 + 2.3.4 + ...+ 9.10.11) - (1.2.3 + ...+ 8.9.10) = 9.10.11 => B = 330
Vây A = 55 + 330 = 385
b) Số số hàng: (2n - 1 - 1): 2 + 1 = n
M = (1 + 2n - 1). n : 2 = n2 => M là số chính phương
Cho A=n^6-n^4+2n^3+23n^2( với n thuộc N, n>1)\chứng minh rằng A không phải là số chính phương