Tìm 2 số tự nhiên mà hiệu bình phương của chúng là 169
Chứng minh trong 4 số tự nhiên bất kì luôn tìm được 2 số mà hiệu các bình phương của chúng chia hết cho 7?
CMR :
1 . tổng bình phương của 3 số tự nhiên liên tiếp ko là số chính phương
2 . ko tồn tại 2 số chính phương mà hiệu của chúng là 2010 ; 1682 ; 2018 ...
1, Gọi 3 số chính phương của 3 số tự nhiên liên tiếp lần lượt là : (a-1)^2 ; a^2 ; (a+1)^2
Xét : (a-1)^2+a^2+(a+1)^2 = a^2-2a+1+a^2+a^2+2a+1 = 3a^2+2 chia 3 dư 2
=> (a-1)^2+a^2+(a+1)^2 ko phải là số chính phương
Tk mk nha
Chứng minh rằng từ 5 số tự nhiên bất kì, luôn tìm được hai số mà hiệu bình phương của chúng chia hết cho 100.
tìm hai số tự nhiên biết hiệu của chúng bằng 2, và hiệu các bình phương của chúng bằng 36 ?
Gọi 2 số cần tìm là a và b (là số tự nhiên)
Theo bài ra ta có: a-b=2
a2-b2=36
=>(a-b)(a+b)=36
=>2(a+b)=36
=>a+b=18
=>a=(18+2):2=10
b=10-2=8
Vậy 2 số cần tìm là 10 và 8
Chứng minh rằng từ 5 số tự nhiên bất kì, luôn tìm được hai số mà hiệu bình phương của chúng chia hết cho 100.
tìm 2 số tự nhiên biết 2 lần số t1 lớn hơn 5 lần số t2 là 5 đơn vị và hiệu bình phương của chúng bằng 351
Tìm 2 số tự nhiên biết 2 lần số thứ nhất lớn hơn 5 lần số thứ 2 là 5 đơn vị và hiệu bình phương của chúng bằng 351
Tìm 2 số tự nhiên lẻ liên tiếp, biết rằng hiệu các bình phương của chúng bằng 56
Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.
Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.
=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15
cho 5 số tự nhiên bất kì chứng minh rằng :trong 5 số ấy có thể chọn ra 2 số mà hiệu bình phương của chúng chia hết cho 7
Tìm 2 số tự nhiên biết 2/3 số thứ nhất bằng 3/4 số thứ 2 và hiệu các bình phương của chúng = 68