Cho tam giác ABC nhọn .Vẽ Ra bên ngoài tam giác này các tam giác ABD . ACE cùng vuông cân ở A .kẺ đường cao AH . Từ D kẻ đường thằng song song với AE , nó cắt tia HA ở I .Chứng minh rằng AI đi qua trung điểm của DE
giúp mình đi các bạn .Cho tam giác ABC nhọn .Vẽ ra bên ngoài tam giác này các tam giác ABD . ACE cùng vuông cân ở A .kẺ đường cao AH . Từ D kẻ đường thằng song song với AE , nó cắt tia HA ở I .Chứng minh rằng AI đi qua trung điểm của DE
Cho tam giác ABC có ba góc nhọn. Vẽ về phía ngoài tam giác ABC các tam giác vuông cân ABD và ACE. Đường thẳng kẻ qua E song song với AD và đường thẳng kẻ qua D song saong với AE cắt nhau tại I.
a) CMR: AI = BC
b) Đường thẳng AI cắt BC tại H. CM : AH vuông góc với BC
Cho tam giác ABC có ba góc nhọn. Vẽ về phía ngoài tam giác ABC các tam giác vuông cân ABD và ACE. Đường thẳng kẻ qua E song song với AD và đường thẳng kẻ qua D song saong với AE cắt nhau tại I.
a) CMR: AI = BC
b) Đường thẳng AI cắt BC tại H. CM : AH vuông góc với BC
Cho tam giác ABC cân tại A, các đường thẳng qua B vuông góc với AB và qua C vuông góc với AC cắt nhau tại S
a) Chứng minh tam giác SBC cân
b) Trên tia đối của tia BS lấy điểm D, trên tia đối của tia CS lấy điểm E sao cho CE=BD. Chứng minh rằng DE song song BC
Bài 3: Cho tam giác ABC. Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân ở A là ABD và ACE. Dựng AH vuông góc với BC, đường thẳng HA cắt DE ở K. Dựng AI vuông góc với DE, đường thẳng IA cắt BC tại M. Chứng minh rằng:
a) Tam giác AEK = Tam giác CAM
b) KD = KE
Cho tam giác ABC nhọn. Bên ngoài tam giác ABC vẽ các tam giác ABD và ACE vuông cân tại A. Kẻ đường cao AH, trung tuyến AM của tam giác ABC. Trên tia đối của AH lấy H sao cho AF=BC. Qua B kẻ đường thẳng song song với AC cắt tia AM tại N. Gọi I, K là gia điểm của tia MA, HA, DE Cm:
1/ BN=AC
2/tam giác ABN= tam giácDAE
3/AI vuông góc với DE
4/ góc DAF = góc ABC
5/ tam giác ABC= tam giác ADF
6/ DF song song với AE
7/ KD=KE
cho tam giác ABC vuông tại A (AB < AC). Về phía ngoài tam giác ABC vẽ 2 tam giác ABD và tam giác ACE vuông cân ở A
a) CM BC = DE
b)CM BD song song với CE
c)Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại. Chứng minh rằng CA vuông góc với NM
d) CM rằng AM = 1 phần 2 DE
a) Xét \(\Delta ABC\)và\(\Delta ADE\):
AB=AD(gt)
\(\widehat{BAC}=\widehat{DAE}=90^o\)
AC=AE(gt)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)
=> BC=DE ( 2 cạnh tương ứng)
=> Đpcm
b) Ta có \(\Delta ABD\)vuông cân tại A
=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)
\(\Delta AEC\)vuông cân tại A
=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)
=> \(\widehat{BDA}=\widehat{ECA}=45^o\)
Mà 2 góc này ở vị trí so le trong
=> BD//CE
=> Đpcm
c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM
Gọi giao điể của NA và MC là I
Xét \(\Delta NMC\)có:
\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)
Mà 2 đường cao này cắt nhau tại A
=> A là trực tâm của \(\Delta MNC\)
=> \(CA\perp NM\)
=> Đpcm
d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)
=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)
=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)
=> \(\widehat{AED}=\widehat{MAE}\)
=> \(\Delta MAE\)cân tại M
=> MA=ME (1)
Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)
=> \(\widehat{ADE}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)
=> \(\widehat{ADE}=\widehat{DAM}\)
=> \(\Delta DAM\)cân tại M
=> MD=MA (2)
Từ (1) và (2)
=> MA=MD=ME
=> \(MA=\frac{1}{2}DE\)
=> Đpcm
P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>
cho tam giác ABC vuông tại A (AB , AC0. Về phía ngoài tam giác ABC vẽ 2 tam giác ABD và tam giác ACE vuông cân ở A.
a) Chứng minh BC=DE
b) Chứng minh BC song song với CE
c) Kẻ đường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc MC cắt BC tại N .Chứng minh rằng CA vuông góc với NM
c) Chứng minh AM = DE chia 2
Cho tam giác ABC đường cao AH, vẽ ra phias ngoài tam giacs các tam giác vuông cân ABD(vuông cân tại B), ACE(vuông cân tại C). Qua C kẻ đường thẳng vuông góc với BE cắt AH ở K. Chứng minh rằng:
a) tam giác KAC=BCE
b)BK vuông góc với CD
c) 3 đường thẳng AH, BE, CD đồng quy
Cho tam giác ABC vuông tại A( AB<AC ). Về phía ngoài tam giác ABC vẽ hai tam giác ABD và tam giác ACE vuông cân ở A
a) CMR: BC = DE
b) BD song song CE
c) kẻ đường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua và vuông góc MC cắt BC tại N. CMR CA vuông góc NM
d) CMR: AM=DE/2