Cho số tự nhiên n không nhỏ hơn 2. Hỏi tồn tại hay không số tự nhiên a sao cho:
n2016<a<n2017
cho số nguyên a không nhỏ hơn 2. Hỏi có tồn tại hay không số tự nhiên A sao cho
(a^2001)<A<(a^2002) và A có ít nhất 600 chữ số 0 ở tận cùng
Cho số nguyên a không nhỏ hơn 2. Hỏi có tồn tại hay không số tự nhiên A sao cho a^2014 < A < a^2015 và A có ít nhất 600 chữ số tận cùng là 0.Giúp tớ nhé các bạn!
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
có tồn tại hay không số tự nhiên n sao cho n^2 n 2 chia hết cho 49 hay không ?
Có tồn tại hay không số tự nhiên n sao cho n^2+n+2 chia hết cho 49 hay không ?
Cho số:
A = n2+ n + 1
Hỏi có tồn tại số tự nhiên n hay không để số A chia hết cho 2010
không vì A=n^2+n+1 nên A luôn là 1 số lẻ
suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010
Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010
Tồn tại hay không số tự nhiên n sao cho n2 + n+1 chia hết cho 1955
Xét : n^2+n = n.(n+1)
Ta thấy n;n+1 là 2 số tự nhiên liên tiếp nên n.(n+1) có tận cùng là 0 hoặc 2 hoặc 6
=> n^2+n+1 có tận cùng là 1 hoặc 3 hoặc 7 nên n^2+n+1 ko chia hết cho 1955
=> n^2+n+1 ko chia hết cho 1955
=> ko tồn tại số tự nhiên n tm bài toán
Tk mk nha
Có tồn tại hay không 2 số tự nhiên a,b sao cho : ( a+b).(a-b)=2002
Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
bài giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
: 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.