Cho 5 số thực không âm a, b, c, d, e có tổng bằng 1. Xếp 5 số này trên một đường tròn. Chứng minh rằng luôn tồn tại một cách xếp sao cho hai số bất kì cạnh nhau có tích không lớn hơn \(\frac{1}{9}\)
Cho 5 số thực không âm a, b, c, d, e có tổng bằng 1. Xếp 5 số này trên một đường tròn. Chứng minh rằng luôn tồn tại một cách xếp sao cho hai số bất kì cạnh nhau có tích không lớn hơn 1/9
Gọi 5 số đó là a; b; c; d; e . ta có a+ b + c + d + e = 1
Không mất tính tổng quát, giả sử 0 < a < b < c < d < e
Nhận xét: c + d < \(\frac{2}{3}\). Vì nếu c + d > \(\frac{2}{3}\)
ta có: 2e > c + d > \(\frac{2}{3}\) => e > \(\frac{1}{3}\) => e + c + d > \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1 . Mâu thuẫn với a + b + c + d + e = 1; và a; b; c; d; e không âm
Áp dụng bđt Cô si ta có: cd < \(\frac{1}{4}\)(c + d)2 => c.d < \(\frac{1}{9}\)
Mặt khác, 1 = a + b + c + d + e > a + 3b + e > 3b + e > 2.\(\sqrt{3be}\) => b.e < \(\left(\frac{1}{2\sqrt{3}}\right)^2=\frac{1}{12}\) < \(\frac{1}{9}\)
+) ta có: a.e < b.e < \(\frac{1}{12}\) < \(\frac{1}{9}\); b.c < c.d < \(\frac{1}{9}\); d.a < d.c < \(\frac{1}{9}\)
=> có thể sắp xếp 5 số a; b; c;d; e theo thứ tự như sau: a; e; b; c ; d đều thỏa mãn tích 2 số bất kì cạnh nhau không vượt quá \(\frac{1}{9}\)
Cho 5 số thực không âm a, b, c, d, e có tổng bằng 1. Xếp 5 số này trên một đường tròn. Chứng minh rằng luôn tồn tại một cách xếp sao cho hai số bất kì cạnh nhau có tích không lớn hơn \(\frac{1}{9}\)
tổng của 5 số không âm bằng đơn vị .Chứng minh rằng có thể xếp chúng trên một đường tròn sao cho tổng của tất cả 5 tích của các cặp số đứng cạnh nhau không lớn hơn 1/5
Nguyên lí Dirichlet ( ko đc bảo mk vào câu hỏi tương tự nha :))
1- Cho tập A= { 1; 2;....; 2017 }
a. Có thể lấy nhiều nhất bao nhiêu phần tử của A sao cho hiệu hai số bất kỳ khác 4.
b. Có thể lấy nhiều nhất bao nhiêu phần tử của A sao cho hiệu hai số bất kỳ không chia hết cho 5.
2- Cho tập B= { 1;2;3;...;100 }
a. Lấy 51 số bất kỳ trong tập A, chứng minh rằng luôn tồn tại hai số mà số này là bội của số kia.
b. Có thể lấy nhiều nhất bao nhiêu số từ A để xếp lên một đường tròn sao cho tích của hai số cạnh nhau nhỏ hơn 100.
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng tỏ rằng trong đó tồn tại 1 số chia hết cho 2021 hoặc tồn tại 1 vài số có tổng chia hết cho 2021. Bài B. Cho một hình vuông cạnh bằng 5 và chia thành 25 hình vuông kích thước 1 x 1. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau. Bài C. Biết 997 là số nguyên tố lớn nhất , nhỏ hơn 1000. Chứng minh rằng tồn tại số tự nhiên có dạng 111...1 chia hết cho 997.
Đinh Hoàng Anh lớp 6CT Lương Thế Vinh Hà Nội cơ sở A đúng kg =)))
Trên mặt phẳng cho 25 điểm. Biết rằng trong ba điểm bất kì trong số đó luôn luôn tồn tại hai điểm cách nhau nhỏ hơn 1. Chứng minh rằng tồn tại hình tròn bán kính 1 chứa không ít hơn 13 điểm đã cho.
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a