Cho tam giác ABC , gọi D là 1 điểm của BC , qua D kẻ đường thẳng // AB , cắt AC tại E , trên cạnh AB Lấy F sao cho AF = DE . gọi I là Trung điểm AD
Cm DE = Ae
E và F đối xứng qua I
Cho tam giác ABC , gọi D là 1 điểm của BC , qua D kẻ đường thẳng // AB , cắt AC tại E , trên cạnh AB Lấy F sao cho AF = DE . gọi I là Trung điểm AD
Cm DE = Ae
E và F đối xứng qua I
Cho tam giác ABC nhọn ( AB<AC ) . Kẻ đường cao AH . Gọi M là trung điểm Ab , N đối xứng H qua M .
a) Chứng minh : ANBH là hình chữ nhật .
b) Trên tia đối tia HB lấy E sao cho H là trung điểm BE , Gọi F là điểm đối xứng A qua H . Chứng minh : ABFE là hình thoi .
c) Gọi I là giao điểm AH và NE . Chứng minh : MI // BC .
d ) Đường thẳng MI cắt AC tại K . Kẻ NQ vuông góc với KH tại Q . Chứng minh : AQ vuông góc BQ .
b1: cho tam giác nhọn ABC. Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK.
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
b) theo câu a, ta có:MD=NE
I1=I2(2 góc đđ)
DMI=90-I1
ENI=90-I2
suy ra DMI=ENI
xét tam giác MDI và tam giác NIE
MD=NE( theo câu a)
DMI=ENI(cmt)
MDI=NEI=90
suy ra tam giác MDI=NIE(g.c.g)
suy ra IM=IN suy ra I là trung điểm của MN
Cho tam giác ABC, I là trung điểm của BC. Đường thẳng vuông góc với AB tại B cắt đường thẳng AI tại D. Trên tia đối của tai ID lấy điểm E sao cho IE=ID. Gọi H là giao điểm của CE và AB. Chứng minh rằng: tam giác AHC là tam giác vuông.
Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)
=> Tam giác CIE = Tam giác BID (c.g.c)
^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong
=> CE//BD hay BD//CH. Mà BD vuông góc với AB
=> CH vuông góc với AB (Quan hệ //, vg góc)
=> Tam giác AHC vuông tại H (đpcm).
Cho tam giác ABC cân tại A, đường trung tuyến AH và đường cao BQ. Gọi M, N lần lượt là trung điểm AB, AC. O là giao điểm của MN và AH, CO cắt AB tại K. Gọi D là điểm đối xứng của H qua M.
a) Tam giác PQH là tam giác gì? Vì sao?
b) Cm: AB = 3AK
c) Gọi E là điểm đối xứng của A qua H. BF va CP là hai đường cao của tam giác BCE. Cm: tam giác FBQ là tam giác vuông.
d) HJ vuông góc AB tại J. Trên tia đối của tia HJ lấy G sao cho HG = AB. Cm: PG là tia phân giác của góc APB.
Cho tam giác ABC , I là trung điểm của BC , đường thẳng vuông góc với AB tại B cắt đường thẳng AI tại D . Trên tia đối của tia ID , lấy điểm E sao cho IE bằng ID . Gọi H la trung điểm của CE và AB . Chứngng minh tam giác AHC là tam giác vuông
Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt tại M và N.
Chứng minh rằng :
a) DM=EN
b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN;
c) Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC )
d) chứng minh tam giác BEI là tam giác cân.
b) chứng tỏ OE = OF.
c) đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại O. CHỨNG tỏ tam giác EKF là tam giác cân và OK vuông góc với EF.