Tìm 2 c/s tận cùng của : \(2^{100}\);\(51^{51}\);\(14^{101}\)
tìm 2 c/s tận cùng của 2100
Cho S=2^1+2^2+2^3+.....+2^100
Tìm chữ số tận cùng của S
Cho S = 2+2^2+2^3+...+2^100. Tìm số tận cùng của S
cho S=2^1+2^2+2^3+...+2^100
a,Chứng minh rằng S chia hết cho 15
b,tìm chữ số tận cùng của S
c,tính tổng S
Cho S=2^1+2^2+2^3+...........+2^100
a,CRN S chia hết cho 3
b,CRM S chia hết cho 15
c,Tìm chữ số tận cùng của S
Dễ thấy S có 100 số hạng nên ta có:
a,S=(2^1+2^2)+(2^3+2^4)+...+(2^99+2^100)
=2(1+2)+2^3(1+2)+...+2^99(1+2)
=3(2+2^3+...+2^99) chia hết cho 3
b,S=(2^1+2^2+2^3+2^4)+...+(2^97+2^98+2^99+2^100)
=2(1+2+4+8)+...+2^97(1+2+4+8)
=15(2+2^5+...+2^97) chia hết cho 15
c, Ta có: 2S=2^2+2^3+...2^201
2S-S=2^201-2
Do 2^201=4^100 có chữ số tận cùng là 6
Nên 2^201-2 có chữ số tận cùng là 4
Hay S có chữ số tận cùng là 4
cho S=1+3+3^2+3^3+...+3^100.Tìm cs tận cùng của S
cho S=1+3+3^2+3^3+...+3^100.Tìm cs tận cùng của S
\(S=1+3+3^2+..+3^{100}\)
\(3S=3+3^2+...+3^{101}\)
\(3S-S=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(2S=3^{100}-1\)
\(S=\frac{3^{100}-1}{2}\)
Chia các thừa số 3 thành nhóm có 4 thừa số 3:3x3x3x3=(...1)
Số nhóm lập được là:
100:4=25 nhóm
=>chữ số tận cùng của 3100-1 là:
(..1)x(...1)x(...1)x.....x(...1)-1=(....0)
Vì 0:2=0=>S có chữ số tận cùng là 0
cho S=1+3+3^2+3^3+...+3^100.Tìm cs tận cùng của S
\(S=1+3+3^2+...+3^{100}\)
=>\(3S=3\left(1+3+3^2+...+3^{100}\right)\)\(=3+3^2+3^3+...+3^{101}\)
=>\(3S-S=\left(3+3^2+3^3+...+3^{101}\right)\)\(-\left(1+3+3^2+...+3^{100}\right)\)
=>\(2S=3^{101}-1\Rightarrow S=\frac{3^{101}-1}{2}\)
số mà lũy thừa lên với số mũ 4k+1 sẽ giữ nguyên c/s tận cùng nên 3101 có tận cùng là 3 => S tận cùng là 1
cho S=1+3+3^2+3^3+...+3^100.Tìm cs tận cùng của S
GIẢI BẰNG PHÉP ĐỒNG DƯ
1.tìm 2 chữ số tận cùng của 2^2003 va 7^9^9
2.tìm hai c/s tận cùng của7^100;8^80;9^7^8;4^1500;7^6^5
3.tìm 3 c/s tận cùng của 3^999