Cho(2a+3b)chia hếtcho5
Chứng minh(3a+2b)chia hết cho 5
cho 2 số nguyên a,b thỏa man:(3a+2b)*(2a+3b) chia hết cho 5
chứng minh (3a+2b)*(2a+3b) chia hết cho 25
Vì 5 là 1 số nguyên tố ⇒ Ít nhất 1 trong 2 số (3a+2b) và(2a+3b) phải chia hết cho 5.
Không mất tính tổng quát, giả sử (3a+2b) ⋮ 5
5(a+b) đương nhiên chia hết cho 5 ⇒5(a+b)-(3a+2b) ⋮ 5
Hay (2a+3b) ⋮ 5
Vậy, nếu (3a+2b)*(2a+3b) ⋮ 5 thì (3a+2b)*(2a+3b) ⋮ 25 (ĐPCM)
a) cho2a + 3b chia hết cho 5 chứng minh ( 3a + 2b ) chia hết cho 5
b) cho 7a + b chia hết cho 11 chứng minh ( 2a + 5b ) chia hết cho 11
cho a,b thuộc Z thỏa mãn (3a+2b).(2a+3b) chia hết cho5 .CMR (3a+2b).(2a+3b) chia hết cho 25
+)Theo bài:(3a+2b).(2a+3b)\(⋮\)5
=>[(3a+2b).(2a+3b)]2\(⋮\)52
=>[(3a+2b).(2a+3b)].[(3a+2b).(2a+3b)]\(⋮\)25
Mà[(3a+2b).(2a+3b)].[(3a+2b).(2a+3b)]\(⋮\)25
=>[(3a+2b).(2a+3b)]\(⋮\)25 hoặc [(3a+2b).(2a+3b)]\(⋮\)25
Mà [(3a+2b).(2a+3b)]=[(3a+2b).(2a+3b)]
=>[(3a+2b).(2a+3b)]\(⋮\)25(đpcm)Vậy[(3a+2b).(2a+3b)]\(⋮\)25Chúc bn học tốtCmr (2a+3b) chia hết cho 5 thì (3a+2b) chia hết cho 5
Gợi ý thôi cũng được =)
2a+3b+3a+2b=5a+5b=5(a+b) chia hết cho 5
Mà 2a+3b chia hết cho 5 nên 3a+2b cũng chia hết cho 5
\(2a+3a+3a+2a=5a+5b=5\left(a+b\right)\)
tuong tu
Cho a,b là các số nguyên thoả mãn: 3a+2b chia hết cho 5
CMR : 2a+3b chia hết cho 5
Với a, b là các số nguyên sao cho a2 + b2 chia hết cho 13. Chứng minh rằng một trong hai số 2a + 3b, 2b + 3a chia hết cho 13
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có : 83a + 38b chia hết cho 17
Suy ra : 17a +83a + 38b + 17b chia hết cho 17
Suy ra 100a +55b chia hết cho 17
Suy ra 5×(20a +11b ) chia hết cho 17
Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17)
Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17
chứng minh rằng:
a) n.(n+1).(n+2)chia hết cho 6
b)Nếu 3a+5b chia hết cho 8 thì 5a+3b chia hết cho 8
c)Nếu a+2b chia hết cho 8 thì 5a+2a chia hết cho 8
(giúp mình với)
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b
cmr a :B = 10n+18n -1 chia hết cho 27
b : nếu a +2b chia hết cho 5 khi và chỉ khi 3a - 4b chia hết cho 5
c : nếu 3a - b +1 và 2a +3b - 1 đều chia hết cho 7 thì a,b chia 7 dư 3
a)Ta có: 10n + 18n - 1 = (10n- 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n+ 18n - 1 chia hết cho 27 (đpcm)