Cho tứ giác ABCD có góc A= góc B, AD=BC. Chứng minh tứ giác ABCD là hình thang cân
cho tứ giác ABCD có: góc A = 110 độ, góc B = 70 độ. AB=BC=AD. chứng minh tứ giác ABCD là hình thang cân???
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)
chúc bạn học giỏi!! ^^
ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434
Cho tam giác ABCD có góc A = góc B và AD = BC. Chứng minh rằng tứ giác ABCD là hình thang cân.
Xét \(\Delta BAD\)và \(\Delta ABC\)có:
\(\widehat{A}=\widehat{B}\)
\(AD=BC\)
\(AB\)chung
\(\Rightarrow\Delta BAD=\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(2 cạnh t.ư)
=>tứ giác ABCD là HTC
Cách 1 : Kẻ thêm đường phụ AC
Và đường phụ BD
Xét tam giác ADC và tam giác ABC ta có :
AC chung
AD = BC (gt)
^A = ^B (gt)
=> tam giác ADC = tam giác ABC
=> AB = DC ( 2 cạnh tương ứng bằng nhau )
hay 2 góc kề cạnh đáy bằng nhau => ABCD là hình thang
Cách 2 : Ta có : AD = BC gt
=> 2 cạnh bên bằng nhau Vậy ABCD là hình thang :))
Tứ giác ABCD có góc A=góc B, BC=AD. Chứng minh ABCD là hình thang cân.
A) Tứ giác ABCD có AB = CD, AC = BD. Chứng minh ABCD là hình thang cân
B) Tứ giác ABCD có AD = AB = BC và góc A+góc C=180 độ. Chứng minh ABCD là hình thang cân
Mng vẽ hình ra nháp dùm mình nha xong rồi ib mail mình cho card 20k (nkhaduy@gmail.com)
Tứ giác ABCD có AB = BC = AD , góc A = 110 , góc B = 70 . Chứng minh rằng :
a) DB là tia phân giác góc B
b) Tứ giác ABCD là hình thang cân
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110) :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân
Tứ giác ABCD có AB = BC = AD , góc A = 110 , góc B = 70 . Chứng minh rằng :
a) DB là tia phân giác góc B
b) Tứ giác ABCD là hình thang cân
nam cao copy tại https://vn.answers.yahoo.com/question/index?qid=20120905071415AAmqNM6
a, Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
tứ giác ABCD có góc A + góc C = 180 độ
nên tứ giác ABCD nội tiếp đường tròn
nên góc ADB = ACB ( 2 góc cùng chắn cung AB)
Mà góc ACB = BAC ( tam giác ABC cân tại B do AB = BC )
và góc BAC = BDC ( cùng chắn cung BC)
==>> góc ADB = BDC (1)
nên DB là tia phân giác của góc D
Ta có góc ADB = ABD ( tam giác ADB cân tại A do AD = AB ) (2)
Từ (1), (2) ta suy ra góc ABD = BDC
mà 2 góc này ở vị trí so le trong so với 2 đoạn AB và CD
do đó AB // CD
==> ABCD là hình thang
mà AD = BC nên ABCD là hình thang cân
Giải giùm mk nhé :)
a) Tứ giác ABCD có AB= CD ;AC=BD. Chứng minh ABCD là hinhg thang cân
b) Tứ giác ABCD có AD=AB=BC và góc A+góc C = 180o. Chứng minh ABCD là hình thang cân
Cho tứ giác ABCD có góc A=góc B, BC=AD. Chứng minh :
a) ΔACD=ΔBDC
b) ABCD là hình thang cân
a, Xét \(\Delta ADC\) và \(\Delta BCD\) có :
AD=BC ( gt)
AC=BD ( gt )
DC chung:
=> \(\Delta ADC\) = \(\Delta BCD\) ( đpcm)
b, Vì góc D = góc C nên ABCD là hình thang cân
Tk mk nha
Bài 3.Cho hình thang ABCD (AB // CD) có AD = CD và AC vuông góc BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E. a) Chứng minh tứ giác AECD là hình thoi. b) Chứng minh tứ giác BEDC là hình bình hành. c) Chứng minh tam giác CEB cân. d) Giả sử tam giác CEB đều. Chứng minh tứ giác ABCD là hình thang cân