Chứng minh rằng tổng của 5 số tự nhiên chẵn liên tiếp thì chia hết cho 5
Chứng minh rằng tổng 5 số tn lẻ liêp tiếp chia cho10 dư 5 ?
chứng minh rằng tổng 5 số chẵn liên tiếp thì chia hết cho10 còn tổng của 5 số lẻ liên tiếp thì chia cho 10 dư 5
Giúp mink với các bạn
5 số chẵn liên tiếp phai có đuôi lần lượt là:0;2;4;8;6
mà tổng 5 số chẵn liên tiếp sẽ co dang :...0+....2+...4+...6+...8=.........0
mà các số có tận là 0 thì chia hết cho 10
5 số lẻ liên tiếp phải có tận lần lượt là:1;3;5;7;9
mà tổng 5 số lẻ liên tiếp thì sẽ có dạng:.....1+........3+.......5+........7+.........9=..........5
ma cac số có tận là 5 thì chia 10 đều dư 5
k nha
Chứng minh rằng tổng của 5 số chẵn liên tiếp chia hết cho 10 còn tổng của 5 số tự nhiên lẻ liên tiếp chia 10 dư 5.
Chứng minh rằng tổng của 5 số tự nhiên chẵn liên tiếp là 1 số chia hết cho 10, còn tổng của 5 số tự nhiên lẻ liên tiếp là 1 số chia cho 10 dư 5
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
c, tổng của 5 số chẵn liên tiếp thì chia hết cho 10, còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5.
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp chia cho 10 dư 5.
5 số chẵn liên tiếp: 2k,2k+2,2k+4,2k+6,2k+8
S=2k+(2k+2)+(2k+4)+(2k+6)+(2k+8)=10k+20
S chia hết cho 10
b) 5 số lẻ liên tiếp: 2k+1,2k+3,2k+5,2k+7,2k+9 có tổng là
S=(2k+1)+(2k+3)+(2k+5)+(2k+7)+(2k+9) = 10k+25 =10k+20+5
=> S:10 dư 5
Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 , con tổng của 5 số lẻ liên tiếp chia cho 10 dư 5
Tổng 5 số chẵn liên tiếp chắc chắn chia hết cho 2 => chúng chia hết cho 2.5 => chia hết cho 10
Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp chia cho 10 dư 5
a) 5 số chẵn liên tiếp: 2k,2k+2,2k+4,2k+6,2k+8
S=2k+(2k+2)+(2k+4)+(2k+6)+(2k+8)=10k+20
S chia hết cho 10
b) 5 số lẻ liên tiếp: 2k+1,2k+3,2k+5,2k+7,2k+9 có tổng là
S=(2k+1)+(2k+3)+(2k+5)+(2k+7)+(2k+9) = 10k+25 =10k+20+5
Do đó: S:10 dư 5
tổng của 5 số chãn liên tiếp sẽ có chữ số tận cùng là 0
nên chioa hết cho 10
tổng của 5 số lẻ liên tiếp có chữ số tận cùng là 5 nên chia 10 dư 5
5 số chẵn liên tiếp: 2k,2k+2,2k+4,2k+6,2k+8
S=2k+(2k+2)+(2k+4)+(2k+6)+(2k+8)=10k+20
S chia hết cho 10
b) 5 số lẻ liên tiếp: 2k+1,2k+3,2k+5,2k+7,2k+9 có tổng là
S=(2k+1)+(2k+3)+(2k+5)+(2k+7)+(2k+9) = 10k+25 =10k+20+5
=> S:10 dư 5
Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp chia cho 10 dư 5.
Tổng của 5 số chẵn thì chia hết cho 2.
Gọi 5 số chẵn liên tiếp là a-4; a-2; a; a+2; a+4.
Tổng của chúng bằng : (a - 4) + ( a - 2) + a + (a + 2) + (a + 4 ) = 5a chia hết cho 5
=> tổng của năm số chẵn chia hết cho 10.
Tổng của năm số lẻ liên tiếp là số lẻ và tương tự ở trên chia hết cho 5 nên chia 10 dư 5
chúc bạn học tốt
mk đang cần gấp
Viết dạng tổng quát của số tự nhiên b chia cho 7 dư 5
viết dạng tổng quát của ba số lẻ liên tiếp
chứng minh rằng tổng của 4 số lẻ liên tiếp luôn chia hết cho 8
chứng minh rằng tổng 4 số chẵn liên tiếp không chia hết cho 8
mk sẽ tk
1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)