Cho hình chữ nhật ABCD. Gọi H là hình chiếu của D trên AC. M là trung điểm của HC. Đường thẳng vuông góc với DM tại M cắt AB tại I. Chứng minh rằng IA=IB
Cho hình chữ nhật ABCD. Gọi H là đường chiếu của D trên AC, M là trung điểm HC. Đường thẳng vuông góc với DM tại M cắt AB ở I. Chứng minh : AI = BI
Gọi K là trung điểm của DH.
MK là đường trung bình của \(\Delta HDC\Rightarrow\hept{\begin{cases}KM//DC\\KM=\frac{1}{2}DC\end{cases}\Rightarrow\hept{\begin{cases}KM//AI\left(1\right)\\KM=\frac{1}{2}AB\end{cases}}}\) (do DC//AI và CD = AB)
Ta có: KM // DC (cmt) và \(DC\perp AD\left(gt\right)\Rightarrow KM\perp AD\)
C/m được K là trực tâm của \(\Delta ADM\Rightarrow AK\perp DM\)
\(\Rightarrow AK//IM\) (vì IM vuông góc với DM) (2)
Từ (1) và (2), ta được AKMI là hình bình hành.
\(\Rightarrow AI=KM=\frac{1}{2}AB\)
\(AI+IB=AB\Rightarrow\frac{1}{2}AB+IB=AB\Rightarrow IB=\frac{1}{2}AB\)
Vậy AI = BI.
1. Cho hcn ABCD . Gọi h là hình chiếu của B tren AC ,M là trung điểm của HC . Đường vuông góc với DM tại M cắt AB ở I .Cmr :AI=IB
Cho hình chữ nhật ABCD, AD<AB, đường thẳng vuông góc với AC tại C cắt AD, AB lần lượt tại M và N. Gọi E là trung điểm của MC. Kẻ Ch vuông góc với BD tại H, BE cắt CH tại K. Chứng minh K là trung điểm của HC.
Trên đường thẳng cho bốn điểm A B C D theo thứ tự đó và AB = CD M là điểm bất kì không nằm trên đường thẳng AB Chứng minh rằng M A + MD lớn hơn MB + MC
Cho hình chữ nhật ABCD vẽ BH vuông góc với AC H thuộc AC M là trung điểm của AK K là trung điểm của CD Chứng minh rằng BM vuông góc vớiMK
Cho tam giác ABC cân tại A từ điểm D thuộc BC vẽ đường thẳng vuông góc với BC cắt các đường AB AC lần lượt tại E F vẽ các hình chữ nhật b g và c d e f h Chứng minh I là trung điểm của g h
Cho hình chữ nhật ABCD. Gọi M là trung điểm của cạnh DC, từ M vẽ đường thẳng vuông góc với DC và cắt cạnh AB tại N.
a) Chứng minh rằng : Tứ giác ADMN là hình chữ nhật.
b) Chứng minh rằng : Tứ giác AMCN là hình bình hành.
c) Vẽ MH vuông góc với NC tại H ; gọi Q, K lần lượt là trung điểm của NB và HC. Chứng minh : QK vuông góc với MK.
a) Ta có :
AB // CD ( Vì ABCD là hcn )
mà N \(\in\) AB
M \(\in\) DC
=) AN // MD
Xét hcn ABCD có :
M là tđ của cạnh DC
NA // MD
=) N là tđ của AB
=) NA = NB
mà AM = MC
lại có : AB = DC ( vì ABCD là hcn )
=) AN = DM
mà AN // DM
=) ANMD là hbh
mà góc M = 90o
=) ANMD là hcn
b)
Ta có : AN = MC ( Vì cx = MD )
mà AN // DC
=) ANCM là hbh
câu c) chút nữa mình làm bn vẽ hình trước
Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH. Tren tia HC lấy điểm D sao cho HD = HA, đường vuông góc với BC tại D cắt AC tại E. Gọi I là hình chiếu vuông góc của E trên AH
a, Chứng minh: Tứ giác HDEI là hình chữ nhật
b, Chứng minh: AE = AB
c, Gọi M là trung điểm của BE. Tính số đo của \(\widehat{AHM}\)
cho tam giác ABC vuông tại A, gọi D là trung điểm của cạnh BC.Lấy điểm M bất kì trên đoạn thẳng AD(M không trùng với A).Gọi N,P theo thứ tự là hình chiếu vuông góc của M xuống AB,AC và H la hình chiếu vuông góc của N xuống đường thẳng PD .
a) Chứng minh AH vuông góc với BH.
b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I
chứng minh ba điểm H,N,I thẳng hàng
cho hình chữ nhật ABCD , H là hình chiếu của B lên AC.Lấy M là trung điểm của AH, N là trung điểm của BH.Qua M kẻ đường thẳng vuông góc với BM cắt D tại K. Chứng minh rằng tứ giác MKCN là hình bình hành
Cho hcn ABCD. H là hìn chiếu của D trên AC. M kà trung điểm HC. Đường vuông góc với DM tại M cắt BC ở I. Chứng minh rằng: IA=IB.