tìm z, biết: 3x-1=\(\frac{1}{243}\)
Tìm x, y, z biết \(\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}\); 3x+2y +1 = 1
Theo t/c dãy tỉ số bằng nhau, ta có \(\frac{2}{3x}\)\(=\frac{1}{2y}\)\(=\frac{2}{z}\)\(=\frac{2+1+2}{3x+2y+z}=\frac{5}{1}=5\)
\(\to\) \(\frac{2}{3x}\)=5 \(\to\)x=2/15. Tương tự, tính dk y, z
Tìm y, biết
\(\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}\)và 3x+2y+z=1
Tìm giá trị của y biết \(\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}\)và 3x+2y+z=1
\(\dfrac{2}{3x}=\dfrac{1}{2y}=\dfrac{2}{z}\)
\(\Rightarrow\dfrac{3x}{2}=\dfrac{2y}{1}=\dfrac{z}{2}=\dfrac{3x+2y+z}{2+1+2}=\dfrac{1}{5}\)
\(\Rightarrow\dfrac{2y}{1}=\dfrac{1}{5}\)
\(\Rightarrow2y=\dfrac{1}{5}\)
\(\Rightarrow y=\dfrac{1}{10}\)
tìm x ,y,z biết
\(\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}và3x+2y+z=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}=\frac{2+1+2}{3x+2y+z}=\frac{5}{1}=5\)(Vì 3x+2y+z=1)
=>\(\frac{2}{3x}=5=>3x=\frac{2}{5}=>x=\frac{2}{15}\)
=>\(\frac{1}{2y}=5=>2y=\frac{1}{5}=>y=\frac{1}{10}\)
=>\(\frac{2}{z}=5=>z=\frac{2}{5}\)
Vậy \(x=\frac{2}{15}\);\(y=\frac{1}{10};\)\(z=\frac{2}{5}\)
Tìm x,y,z, biết \(\frac{2x+1}{5}=\frac{3x-2}{7}=\frac{z+4}{9}=\frac{2x+3y-1}{6x}\)
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{z+4}{9}=\frac{2x+3y-1}{6x}\)(1)
Áp dụng tính chất dãy tỉ sổ bằng nhau, ta được
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{z+4}{9}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
\(\Rightarrow\frac{12}{6x}=\frac{2x+3y-1}{2x+3y-1}=1\)
\(\Rightarrow\frac{2}{x}=1\)
\(\Rightarrow x=2\)
Thay x=2 vào (1), ta được
\(\frac{3y-2}{7}=\frac{z+4}{9}=\frac{2\cdot2+1}{5}=1\)
\(\Rightarrow\hept{\begin{cases}3y-2=7\\z+4=9\end{cases}}\Rightarrow\hept{\begin{cases}3y=9\\z=5\end{cases}}\Rightarrow\hept{\begin{cases}y=3\\z=5\end{cases}}\)
Vậy...hok tốt
1) Tìm x,y biết:
a) 3x = 4y; 5y = 6z và x+y+z=1
b) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5};3x+4y+5z=1\)
1)
a) 3x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{6}\)( 1 )
5y = 6z \(\Rightarrow\frac{y}{6}=\frac{z}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{8+6+5}=\frac{1}{19}\)
\(\Rightarrow x=\frac{8}{19};y=\frac{6}{19};z=\frac{5}{19}\)
b) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\Rightarrow\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}=\frac{\left(3x-3\right)+\left(4y-8\right)+\left(5z-15\right)}{9+16+25}=\frac{-25}{50}=\frac{-1}{2}\)
\(\Rightarrow x=\frac{-1}{2};y=0;z=\frac{1}{2}\)
Tìm x thuộc Z biết:
\(^{3^8}\)bé hơn hoặc bằng 3 mũ x bé hơn\(\frac{1}{243}\)
Tìm X ∈ N biết:
a,2x . 2x + 1=128
b,3x+1 . 3x=243
a)2x.2x+1=128
\(4x^2+1=128\)
\(\Rightarrow4x^2=127\)
\(\Rightarrow x^2=127\div4\)
\(\Rightarrow x^2=3.175\)
mà \(x\in N\) hay\(x^2\in N\)
\(\Rightarrow\)Không có x
b) 3x+1.3x=243
\(\Rightarrow\)3x+3x=243
\(\Rightarrow\)6x=243
\(\Rightarrow\)x=40,5
Mà \(x\in N\)
\(\Rightarrow\)Không có x
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405