Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Giang
Xem chi tiết
hong thi dung
Xem chi tiết
Đinh Tuấn Việt
16 tháng 7 2015 lúc 23:12

+) Góc xAC = góc ABC + ACB (tính chất góc ngoài tam giác)

góc A2 = xAC / 2 

=> góc A= (góc ABC + C1) / 2 = B1 + ( C1 / 2 ) (Vì góc B1 = ABC /2 )

+) Trong tam giác AIB: góc AIB = 180o - (B1 + A + A2)

                                              = 180o - (B1 + A +B1 + ( C1 / 2 ) )

                                              = 180o - (2.B1 + A + ( C1 / 2 ) )

                                              = 180o - (B + A1 + ( C1 / 2 ))

Mà B + A1 = 180o - C1 =  180o - 70o = 110o; C1 / 2 = 70o/ 2 = 35o

=> góc AIB = 180o - (110o + 35o) = 180o - 145o = 35o

ngô thị duyen
Xem chi tiết
NEYMAR
Xem chi tiết
Lê Thảo Linh
Xem chi tiết
Cù Thúy Hiền
Xem chi tiết
Nguyễn Hải Anh Jmg
Xem chi tiết
Trần Thị Loan
26 tháng 5 2015 lúc 19:54

A B C I 1 1 1 2 x

+) Góc xAC = góc ABC + ACB (tính chất góc ngoài tam giác)

góc A2 = xAC / 2 

=> góc A2 = (góc ABC + C1) / 2 = B1 + ( C1 / 2 ) (Vì góc B1 = ABC /2 )

+) Trong tam giác AIB: góc AIB = 180o - (B1 + A + A2)

                                              = 180o - (B1 + A +B1 + ( C1 / 2 ) )

                                              = 180o - (2.B1 + A + ( C1 / 2 ) )

                                              = 180o - (B + A1 + ( C1 / 2 ))

Mà B + A1 = 180o - C1 =  180o - 70o = 110o; C1 / 2 = 70o/ 2 = 35o

=> góc AIB = 180o - (110o + 35o) = 180o - 145o = 35o

Phạm Quang Long
20 tháng 2 2016 lúc 12:01

Trần thị Loan là thành viên trong Online Math

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 3 2018 lúc 16:44

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2018 lúc 2:12

Ta có AA′⊥ AB′ vì chúng là hai tia phân giác của hai góc kề bù. Tương tự AA′⊥ AC′. Vì qua A chỉ có một đường vuông góc với AA' nên ba điểm B', A, C' thẳng hàng và AA′⊥ B′C′, hay A'A là một đường cao của tam giác A'B'C'. Hoàn toàn tương tự ta chứng minh được BB' và CC' là hai đường cao của tam giác A'B'C'.

Mặt khác theo cách chứng minh của bài 9.5 ta có AA', BB', CC' là ba tia phân giác của các góc A, B, C của tam giác ABC. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C'.

Vũ Thùy Linh
Xem chi tiết