Kí hiệu S(n) tổng các chữ số của n. Tìm số nguyên dương n sao cho S(n) = n 2 - 2013n + 6
Kí hiệu S(n) là tổng các chữ số của một số nguyên dương n. Tìm số nguyên dương n nhỏ nhất sao cho S(n).S(n+1)= 87
Các bạn giúp mình với!
Ta thấy \(87=1.87=3.29\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)
Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.
TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)
Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)
TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)
Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.
TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:
TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.
TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)
Vậy, số cần tìm là 11999.
Kí hiệu S(n) là tổng các chữ số của n . Tìm số nguyên dương n sao cho n+S(n)=54
Ký hiệu S(n) là tổng các chữ số của số tự nhiên n
Tìm n sao cho S(n) = n2 - 2013n + 6
Giả sử khi biểu diễn số tự nhiên n dưới dạng số thập phân,ta được:
\(n=a_m\cdot10^m+a_{m-1}\cdot10^{m-1}+....+a_1\cdot10+a_0\)với \(a_i\)là các chữ số,\(i=0,1,2,3,....,m\)và \(m\inℕ\)
\(\Rightarrow n\ge a_m+a_{m-1}+....+a_0\)
\(\Rightarrow n\ge S\left(n\right)\)
\(\Rightarrow n\ge n^2-2013n+6n\)
\(\Rightarrow n^2+6\le2014n\)
\(\Rightarrow n+\frac{6}{n}\le2014\)
\(\Rightarrow n< 2014\left(1\right)\)
Mà \(S\left(n\right)\ge0\)
\(\Rightarrow n^2-2013n+6\ge0\)
\(\Rightarrow n^2+6\ge2013n\)
\(\Rightarrow n+\frac{6}{n}\ge2013\)
\(\Rightarrow n\ge2013\left(2\right)\)
Từ (1) và (2) suy ra n=2013
Thay vào bài toán,ta được:
\(S_{2013}=2013^2-2013\cdot2013+6\left(TM\right)\)
Vậy số tự nhiên n cần tìm là 2013
Kí hiệu S(n) là tổng các chữ số nguyên dương n.Tìm số nguyên dương n nhỏ nhất sao cho S(n).S(n+1)=87
KÍ hiệu S(n) là tổng của tất cả các số nguyên dương n.
Tìm số nguyên dương n nhỏ nhất sao cho S(n).S(n+1)=87
Kí hiệu S(n) là tổng các chữ số của số nguyên dương n . Tìm số nguyên dương n nhỏ nhất sao cho: S(n) x S(n+1) = 87 .
Nhanh nhanh hộ với ạ
Tìm số tự nhiên n sao cho S(n) là tổng các chữ số của n và S(n)=n2-2013n+6.
gọi a là số chữ số của n.
dễ thấy S(n)>0 => n>2012 => a ≥ 4
với n=2013 thấy thỏa mãn.
với n>2013 ta có: S(n)=n(n-2014)+n+6 ≥ n+6 > n > $10^a$10a 10^a> 9a (với a ≥ 4)
Kí hiệu S(n) là tổng các chữ số của n . Tìm n nguyên dương nhỏ nhất sao cho :
S(n) x S(n+1) = 87
với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó .Chẳng hạn d(2018) = 4 vì 2018 có và chỉ có 4 ước Nguyên Dương là 1;2;1009; 2018 và s (2018) = 1 + 2 + 1009 + 2018 = 3030 Tìm tất cả các số nguyên dương x sao cho s(x).d(x)= 96
Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến