Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thành Trung
Xem chi tiết
Đinh Đức Hùng
19 tháng 1 2017 lúc 12:46

x + xy + y = 4

<=> x + xy + y + 1 = 4 + 1

<=> x(y + 1) + (y + 1) = 5

<=> (y + 1)(x + 1) = 5

=> y + 1 và x + 1 thuộc ước của 5

=> Ư(5) = { - 5; - 1; 1; 5 }

Ta có bảng sau :

x + 1-5-151
y + 1-1-5
x;y-6;-2-2;-64;0 0;4

Vậy (x;y ) = { ( - 6; - 2 ); ( - 2; - 6 ) ; ( 4 ; 0 ); ( 0 ; 4 ) }

Nguyen Hanh Dan
19 tháng 1 2017 lúc 12:48

x+xy+y=4

x(1+y)+y=4

x(1+y)+(y+1)=4+1

(y+1)(x+1)=5

Ta có bảng giá trị sau 

y+1-1-5
x+1-5-1
y-2-604
x-6-240

Vậy ta có các cặp giá trị x,y={(-2;-6),(-6;-2),(0;4),(4;0)}

nhớ k mik nha.THANKS

naruto toản
19 tháng 1 2017 lúc 13:05

Thank Đinh Đức Hùng

Nguyễn Văn Vũ
Xem chi tiết
Nguyễn Việt Nga
19 tháng 10 2016 lúc 22:38

Ta có:\(x\left(x+1\right)=y^2+1\Leftrightarrow x^2+x=y^2+1\Leftrightarrow4x^2+4x+1=4y^2+5\)

\(\Leftrightarrow\left(2x+1\right)^2-4y^2=5\Leftrightarrow\left(2x+2y+1\right).\left(2x-2y+1\right)=5\)

Do x,y thuộc Z nên  2x+2y+1 và 2x-2y+1 là ước của 5

Ta có bảng giá trị :

2x+2y+115-1-5
2x-2y+151-5-1
x11-2-2
y-111-1

Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(1;1\right);\left(-2;1\right);\left(-2;-1\right)\right\}\)

Nguyễn Mai Thanh Bình
Xem chi tiết
Mai
Xem chi tiết
Duy Minh
Xem chi tiết
Nguyễn thành Đạt
5 tháng 4 2023 lúc 21:05

\(x+xy+y=1\)

\(2x+2xy+2y=2\)

\(2x\left(1+y\right)+2y=2\)

\(2x\left(y+1\right)+2y+2=4\)

\(2x\left(y+1\right)+2\left(y+1\right)=4\)

\(\left(2x+2\right)\left(y+1\right)=4\)

\(2\left(x+1\right)\left(y+1\right)=4\)

\(\left(x+1\right)\left(y+1\right)=2\)

\(TH1:\left\{{}\begin{matrix}x+1=1\\y+1=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}x+1=2\\y+1=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(TH3:\left\{{}\begin{matrix}x+1=-1\\y+1=-2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

\(TH4:\left\{{}\begin{matrix}x+1=-2\\y+1=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

\(Vậy...\)

Phạm Thành Đạt
5 tháng 4 2023 lúc 21:00

x+xy+y=1⇔x(y+1)+y+1=2⇔(x+1)(y+1)=2

⇒(x+1;y+1)=(-1;-2),(-2;-1),(1;2),(2;1)

sau tự tính nhé :3

Hằng Phạm
Xem chi tiết
Nguyễn Anh Quân
6 tháng 1 2018 lúc 22:06

=> xy+2y-x+3 = 0

=> (xy+2y)-(x+2)+5=0

=> y.(x+2)-(x+2) = 5

=> (x+2).(y-1) = 5

Đến đó bạn dùng quan hệ ước bội rồi tìm x,y ; nhớ x,y thuộc N chứ ko phải thuộc Z

Tk mk nha

jksfhisd
Xem chi tiết

 xy = -(x+ y)

<=> xy+x+y=0

<=> x(y+1)+(y+1)=1

<=> (x+1)(y+1)=1

Lập bảng là ra

jksfhisd
7 tháng 6 2019 lúc 19:03

lập hộ mik cái bảng

jksfhisd
7 tháng 6 2019 lúc 19:08

bạn thùy linh lập hộ cái bảng vs

nguyen hoang khang
Xem chi tiết
Kill Myself
Xem chi tiết
Công Tử Họ Nguyễn
9 tháng 10 2018 lúc 21:27

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Kim
9 tháng 10 2018 lúc 21:27

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Hoàng Thế Hải
9 tháng 10 2018 lúc 21:34

Xét x= 1 => \(\dfrac{2}{y-1}\in\mathbb N\), từ đó có \(y=2\vee y=3\)

Xét y=1 => \(\dfrac{x^3+x}{x-1}=x^2+x+2+\dfrac{2}{x-1}\in\mathbb N\), từ đó có \(x=2\vee x=3\)

Xét \(x\ge 2\) hoặc \(y\ge 2\) . Ta có : \((x,xy-1)=1\). Do đó :

\(xy-1|x^3+x\Rightarrow xy-1|x^2+1\Rightarrow xy-1|x+y\)

=> \(x+y\ge xy-1\Rightarrow (x-1)(y-1)\le 2\). Từ đó có \((x-1)(y-1)=1\ \vee (x-1)(y-1)=2\) 

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)