Tính giá trị biểu thức:
(-2).\(\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right)...\left(-1\frac{1}{2009}\right).\left(-1\frac{1}{2010}\right)\)
Tính giá trị của biểu thức: \(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2010}\right)\)
Tính giá trị biểu thức:
\(B=\left(1-\frac{1}{^{2^2}}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{2010^2}\right)\)
\(B=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2010^2-1}{2010^2}\right)\)
\(B=\left(\frac{\left(2-1\right)\left(2+1\right)}{2^2}\right)...\left(\frac{\left(2010-1\right)\left(2010+1\right)}{2010^2}\right)\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2009.2011}{2010.2010}\)
\(B=\left(\frac{1}{2}.\frac{2}{3}...\frac{2009}{2010}\right)\left(\frac{3}{2}.\frac{4}{3}...\frac{2011}{2010}\right)\)
\(B=\frac{1}{2010}.\frac{2011}{2}\)
\(B=\frac{2011}{4020}\)
Cho 3 số x y z thỏa mãn x + y + z = 2010 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\)
Tính giá trị biểu thức P= \(\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2011}+x^{2011}\right)\)
Tính giá trị biểu thức: A=\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right).}\)
Tính giá trị biểu thức
a, \(A=2010^{2010}.\left(7^{10}:7^8-3.16-2^{2010}:2^{2010}\right)\)
b, \(B=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+1:\left(30.1009-160\right)\)
a,
A = 20102010.[710:78-3.16-22010:22010]
= 20102010.[72-48-1]
= 20102010.0 = 0
b,
B = 1
\(A=2010^{2010}.\left[7^{10}:7^8-3.16-2^{2010}:2^{2010}\right]\)
\(A=2010^{2010}.\left[7^2-48-1\right]\)
\(A=2010^{2010}.0\)
\(Vay\)\(A=0\)
A= 20102010(72 - 48 - 1)
A=20102010(49-48-1)
A=20102010.0
A=0
Tính giá trị biểu thức: A=\(\frac{\left(1+17\right)\times\left(1+\frac{17}{2}\right)\times\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right)\times\left(1+\frac{19}{2}\right)\times\left(1+\frac{19}{3}\right)....\left(1+\frac{19}{17}\right)}\)
Tính giá trị biểu thức
\(A=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{3}{7}\right)...\left(1-1\frac{2}{7}\right)\left(1-1\frac{3}{7}\right)\)
\(\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\left(1-1\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{3}{7}\right).0\)
\(=0\)
Trong dãy nhất định có \(\left[1-\frac{7}{7}\right]=0\)nên tích dãy trên là 0
Tính:
\(\left(-2\right).\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right)...\left(-1\frac{1}{2009}\right).\left(-1\frac{1}{2010}\right)\)
\(=\left(-2\right).\left(-\frac{3}{2}\right).\left(-\frac{4}{3}\right)....\left(-\frac{2010}{2009}\right).\left(-\frac{2011}{2010}\right)=\frac{\left(-2\right).\left(-3\right).\left(-4\right)....\left(-2010\right).\left(-2011\right)}{2.3.4....2009.2010}=2011\)
Bài1:Tính giá trị biểu thức sau:
A=\(\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)
Bài 2: Tính giá trị biểu thức:
B= \(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2003}\right)x\left(1-\frac{1}{2004}\right)\)
ai xong sẽ có tích , phải làm giải từng bước ra nhé!
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)