Tìm GT nguyên x để P = 2/6-x có GTLN
BT1: Cho hàm số:
f(x)= \(\frac{x+2}{x-1}\)
a) Tìm x để vế phải có nghĩa
b) Tính f(7)
c) Tìm x để f(x)= \(\frac{1}{4}\)
d) Tìm x thuộc Z để f(x) có gt nguyên
e) Tìm x để f(x) >1
BT2 : Tìm x thuộc Z để biểu thức :
a) P= 9-2.|x-3| đạt GTLN
b) Q= |x-2| + |x-8| đạt GTNN
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
tìm GTLN
|x|-|x-2|
tìm n để \(\frac{7n-8}{2n-3}\)có GTLN
tìm x nguyên để \(\frac{5-x}{x-2}\)có GTNN
Xét biểu thức:
A=1/5.225/X+2 +3/14.196/3/X+6 ( x thuộc Z; x không bằng -2)
a)Rút gọn A
b)tìm các số nguyên x để A có giá trị lad số nguyên
c)Trong các số nguyên A,tìm GTLN,GTNN
Bài 1: tìm gtnn của bt
a, M=x2+5 b, P= / x-2/+3
Bài 2: tìm gtln của bt
P=-4(x-5)2+5
Bài 3: Tìm gt nguyên của x để A=\(\frac{x+5}{x-3}\)có gt nguyên
Giúp mình vs, mai mình thi GHKII r
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
Cho biểu thức A = \(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a) Rút gọn A
b) Tìm x để A > 0
c) Tìm x để \(x^2+3x+2=0\)
d) Tìm x để A đạt GTLN , tìm GTLN đó
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
tìm x để biểu thức sau có GT nguyên
(x+1)(x-2) phần x+6
GIÚP MIK VS MỌI NGƯỜI MIK CẢM ƠN TRC
(x+1)(x-2)phẫnx+6
x^2-2x+x-2 phầnx+6
x^3-4 phần x+6
(x^2-4):6=0 (rút gọn)
x^2-4 =0
x^2 =4
x =2
Vậy x=2
tôi sợ bài tôi làm sai nên bạn cẩn thận khi làm hoặc chép
Tìm x > 0 để B = \(x = {x \over (x+2011)^2}\) đạt GTLN. TÌm GTLN.
TÌm x > 0 để B = \(\frac{x}{\left(x+2011\right)^2}\)đạt GTLN. Tìm GTLN.
Tìm giá trị nguyên của biến x để biểu thức:
a.\(A=\frac{2}{6-x}\)có GTLN
b. \(B=\frac{8-x}{x-3}\)có GTNN
A= 1/15.225/x+2 + 3/14.196/3x+6
a. Rút gọn A
b. Tìm các số nguyên x để A có giá trị là số nguyên
c. Trong các giá trị nguyên của A, tìm GTLN và giá trị nguyên nhỏ nhất
giúp mình đi mình cũng ko làm dc bài này
a) Ta có : \(A=\frac{1}{15}.\frac{225}{x+2}+\frac{3}{14}.\frac{196}{3x+6}\)
\(=\frac{225}{15}.\frac{1}{x+2}+\frac{196}{14}.\frac{3}{3x+6}\)
\(=15.\frac{1}{x+2}+14.\frac{1}{x+2}\)
\(=\frac{1}{x+2}\left(15+14\right)\)
\(=\frac{1}{x+2}.29\)
\(=\frac{29}{x+2}\)
Vậy A = \(\frac{29}{x+2}\)
b) Ta có : \(A=\frac{29}{x+2}\)
Để \(A\in Z\Rightarrow\frac{29}{x+2}\in Z\Rightarrow x+2\in\text{Ư}_{\left(29\right)}=\left\{1;-1;29;-29\right\}\text{ }\text{ }\)
Ta xét bảng sau :
x+2 | -1 | 1 | -29 | 29 |
x | -3 | -1 | -31 | 27 |
Vậy \(x\in\left\{-3;-1;-31;27\right\}\)
c) Trong các giá trị A nguyên trên GTLN của A là 27
GTNN của A là -31