Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jenny phạm
Xem chi tiết
Kaori Miyazono
25 tháng 8 2018 lúc 10:02

Ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Vì \(\left(x+y\right)^2\ge0\)nên \(xy\ge0\)'

Do đó không tồn tại x,y trái dấu và không đối nhau

Vậy ...

Ho Quoc NAm
25 tháng 8 2018 lúc 10:20

Ta dùng pháp phản chứng:   

Giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức: \(\frac{1}{x+y}\) = \(\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}\)\(\frac{y+x}{xy}\)  <=> \(\left(x+y\right)^2\)  = xy

Điều này vô lí vì  \(\left(x+y\right)^2\)  > 0 còn xy < 0( vì x và y trái dấu , không đối nhau). Vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài.Chấm cho mình nha.

Vũ Ngọc Bích
Xem chi tiết
doremon
21 tháng 7 2015 lúc 19:25

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}=\frac{x+y}{xy}\)

=> (x + y)2 = xy

Vì (x + y)2 >= 0 (1)

Mà xy < 0 (vì x, y trái dấu) (20

Từ (1) và (2) => Ko tồn tại x, y thỏa mãn đề bài.

Cho **** nha

leonard
Xem chi tiết
Hello Hello
Xem chi tiết
Phong trương
5 tháng 7 2019 lúc 9:57

ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)

mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)

chúc bạn học tốt

T.Ps
5 tháng 7 2019 lúc 9:57

#)Giải :

Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6

Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)

\(\Rightarrow a^2=6b^2\)

\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)

Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)

Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6

=> đpcm

Kiệt Nguyễn
5 tháng 7 2019 lúc 10:04

\(x^2=6\Leftrightarrow x=\sqrt{6}\)

Giả sử \(\sqrt{6}\)là số hữu tỉ, như vậy \(\sqrt{6}\)có thể viết được dưới dạng :

                \(\sqrt{6}=\frac{m}{n}\)với \(m,n\inℤ\),\(\left(m,n\right)=1\)

Suy ra \(m^2=6n^2\)(1), do đó \(m^2⋮3\). Ta lại có 3 là số nguyên tố nên \(m⋮3\)(2)

Đặt m = 3k \(\left(k\inℕ\right)\).Thay vào (1) ta được \(9k^2=6n^2\)nên \(3k^2=2n^2\)

suy ra \(5n^2⋮3\)

Do (5, 3) = 1 nên \(n^2⋮3\), do đó \(n⋮3\left(3\right)\)

Từ (2) và (3) suy ra m và n cùng chia hết cho 3, trái với \(\left(m,n\right)=1\)

Như vậy \(\sqrt{6}\)không là số hữu tỉ, do đó \(\sqrt{6}\)là số vô tỉ.

Vậy x là số vô tỉ hay không tồn tại số hữu tỉ x thỏa mãn đề bài (đpcm)

adam ff
Xem chi tiết
Hello Hello
Xem chi tiết
Unknow
Xem chi tiết
Trần Gia Hân
30 tháng 8 lúc 11:02

z ghê z

vu minh hang
Xem chi tiết
Hoa Nhan
Xem chi tiết
zZz Cool Kid_new zZz
24 tháng 7 2020 lúc 22:11

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3

Khách vãng lai đã xóa