Chứng minh rằng nếu 2 số chia cho 3 có cùng số dư thì hiệu của chúng chia hết cho 3
chứng tỏ rằng :
a) nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 . Chứng minh tổng quát .
b) nếu 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Chứng tỏ rằng:
a) Nếu hai số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7. Chứng minh bài toán tổng quát.
b) Nếu hai số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3.
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá
Chứng minh rằng:
a) Nếu hai số chia cho 3 có cùng số dư thì hiệu của chúng chia hết cho 3
b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2
a, Gọi 2 số đó là a,b
Gia sử a,b cùng chia 3 dư r
=> a=3k+r ; b=3q+r ( k;q thuộc N )
=> a-b = 3k+r - (3q+r) = 3k-3q = 3.(k-q) chia hết cho 3
b, Áp dụng nguyên lí điricle thì trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích của chúng chia hết cho 2
Tk mk nha
A ,chứng minh rằng nếu hai số tự nhiên cùng chia cho 5 và có cùng số dư thì hiệu của chúng chia hết cho 5
B,cho 2 số tự nhiên a và b ko chia hết cho 3 khi chia a avf b cho 3 thì có 2 số dư khác nhau chứng minh rằng ( a +b )chia hết cho 3
mik cần rất rất là gấp mong các bạn giúp mik tik
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Chứng minh rằng nếu 2 số chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7
Chứng minh rằng nếu 2 số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi 2 số đó là 7q + b và 7k + b (Vì 2 số này có cùng số dư)
Theo bài ra, ta có hiệu:
(7q + b) - (7k + b)
= (7q - 7k) + (b - b)
= 7(q - k) chia hết cho 7 hay 2 số có cùng số dư khi chia cho 7 thì chia hết cho 7
1.Chứng minh rằn 3 STN liên tiếp thì sẽ có một số chia hết cho 3
2.Chứng minh rằng 4 STN liên tiếp thì có một số chia hết cho 4
3. Chứng minh rằng Nếu hai STN liên tiếp chùng chia cho 5 và có cùng số dư thì thì hiệu của chúng chia hết cho 5
Chú ý là chữ số liên tiếp một chữ chia hết cho 3 nha chứ ko phải là tổng chia hết cho 3 (áp dụng với bài 4 nữa)
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
Chứng tỏ rằng :
a) 2 số chia hết cho 5 có cùng số dư thì hiệu chúng chia hết cho 5
b) 2 số ko chia hết cho 3 có số dư khác nhau thì tổng của chúng chia hết cho 3
chứng minh rằng nếu hai số chia cho số thứ ba có cùng số dư thì hiệu của chúng chia hết cho số thứ ba đó
Gọi số thứ nhất là a; số thứ hai là b; số thứ ba là m và số dư là n
Thương của a:m là t1
Thương của b:m là t2
Ta có
a=mt1+d
b=mt2+d
=> a-b=m(t1-t2) chia hết cho m