giúp mình với :
giải hệ phương trình:
\(\begin{cases}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{cases}\)
giải hệ phương trình giúp mình với :)
\(\hept{\begin{cases}x^2-2y^2=-1\\2x^3-y^3=2y-x\end{cases}}\)
\(\hept{\begin{cases}xy^2+2y-2=x^2+3x\\x+y=3\sqrt{y-1}\end{cases}}\)
\(\hept{\begin{cases}x^2-2y^2=xy+x+y\\x\sqrt{2y}-y\sqrt{x-1}=2x-y+1\end{cases}}\)
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{cases}}\)
\(HPT\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=11\\\left(x+y\right)+xy=3+4\sqrt{2}\end{cases}}\)
Đặt x+y=a;xy=b thì hệ trở thành:
\(\hept{\begin{cases}a^2-2b=11\\a+b=3+4\sqrt{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a^2-2b=11\\b=3+4\sqrt{2}-a\end{cases}}}\)
=> \(a^2-2\left(3+4\sqrt{2}-a\right)=11\)
<=>\(a^2-6-8\sqrt{2}+2a-11=0\)
\(\Leftrightarrow a^2+2a-17-8\sqrt{2}=0\)
\(\Leftrightarrow a^2+2a-\left(16+2.4.\sqrt{2}+2-1\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2-\left(4+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(a+1-4-\sqrt{2}\right)\left(a+1+4+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(a-3-\sqrt{2}\right)\left(a+5+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3-\sqrt{2}=0\\a+5+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3+\sqrt{2}\\a=-5-\sqrt{2}\end{cases}}}\)
=>\(\orbr{\begin{cases}b=3+4\sqrt{2}-3-\sqrt{2}=3\sqrt{2}\\b=3+4\sqrt{2}+5+\sqrt{2}=8+5\sqrt{2}\end{cases}}\)
- Với \(a=3+\sqrt{2},b=3\sqrt{2}\),ta có: \(x+y=3+\sqrt{2}\Rightarrow y=3+\sqrt{2}-x\) (1)
Thay (1) vào \(xy=3\sqrt{2}=b\Rightarrow x\left(3+\sqrt{2}-x\right)=3\sqrt{2}\)
\(\Leftrightarrow3x+x\sqrt{2}-x^2=3\sqrt{2}\Leftrightarrow x\left(3-x\right)+\sqrt{2}\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\sqrt{2}-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\sqrt{2}\\y=3\end{cases}}\)
- Với \(a=-5-\sqrt{2},b=8+5\sqrt{2}\), ta có: \(x+y=-5-\sqrt{2}\Rightarrow y=-5-\sqrt{2}-x\)(2)
Thay (2) vào \(xy=8+5\sqrt{2}=b\Rightarrow x\left(-5-\sqrt{2}-x\right)=8+5\sqrt{2}\)
\(\Leftrightarrow-x^2-5x-x\sqrt{2}-8-5\sqrt{2}=0\)
\(\Leftrightarrow-x^2+\left(-5-\sqrt{2}\right)x+\left(-8-5\sqrt{2}\right)=0\)(3)
\(\Delta=\left(-5-\sqrt{2}\right)^2-4.\left(-1\right).\left(-8-5\sqrt{2}\right)\)
\(=27+10\sqrt{2}-32-20\sqrt{2}=-5-10\sqrt{2}< 0\)
=>pt (3) vô nghiệm
Vậy \(\left(x;y\right)=\left(3;\sqrt{2}\right)\) hoaojwc \(\left(\sqrt{2};3\right)\)
bài 1:giải hệ phương trình \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}}\)
Bài 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}}\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
GIẢI HỆ PHƯƠNG TRÌNH:
1.\(\hept{\begin{cases}\sqrt[4]{y^3-1}+\sqrt{x}=3\\x^2+y^2=82\end{cases}}\)
2.\(\hept{\begin{cases}\left(x-1\right)\left(xy-x^2\right)=3\\x^2-2y+y^2=4\end{cases}}\)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}}\)
2\(\hept{\begin{cases}15x=y-5\\16x=y+3\end{cases}}\)
Giúp mình với mình cần gấp!!!
1)
\(\hept{\begin{cases}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-y\left(\sqrt{2}+\sqrt{3}\right)=\sqrt{2}+\sqrt{3}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
Bài 1: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+32y^2=9y^4=\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{cases}}\)
Bài 2: Giải hệ phương trình:
\(\hept{\begin{cases}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{cases}}\)
Bài 3: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{cases}}\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
TÌM NGHIỆM NGUYÊN CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}xy=x+y+z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x, y, z nhỏ nhất)
2,\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x, y, z nhỏ nhất)
3, \(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
4, \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
GIẢI PHƯƠNG TRÌNH
1, \(x^2-2x=2\sqrt{2x-1}\)
2,\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI
ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
giải hệ phương trình : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x-y}=4\\x^2+xy+y^2=192\end{cases}}\)