Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tôi cô đơn
Xem chi tiết
Sorano Yuuki
Xem chi tiết
Trà My
29 tháng 5 2017 lúc 22:51

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abx-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

=>bz-cy=cx-az=ay-bx=0

bz-cy=0 => bz=cy => \(\frac{b}{y}=\frac{c}{z}\)cx-az=0 => cx=az => \(\frac{c}{z}=\frac{a}{x}\)

=>\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow a:b:c=x:y:z\)(đpcm)

Nguyễn Thị Ngố
Xem chi tiết
vietdungtotbung
Xem chi tiết
Trương Thái Hậu
12 tháng 8 2016 lúc 9:06

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{\left(bz-cy\right).x}{ax}=\frac{\left(cx-az\right)y}{by}=\frac{\left(ay-bx\right).z}{cz}\)

\(\Rightarrow\frac{bxz-cxy}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}\)

Suy ra:

        bz - cy = 0                        (1)

        cx - az = 0                        (2)

        ay - bx = 0                        (3)

Từ (1) ta có: \(bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\left(I\right)\)

Từ (2) ta có: \(cx=az=\frac{z}{c}=\frac{x}{a}\left(II\right)\)

Từ (3) ta có: \(ay=bx=\frac{x}{a}=\frac{y}{b}\left(III\right)\)

Từ (I), (II), (III) => x: y: z = a: b: c

Thủy Lê
Xem chi tiết
Kiệt Nguyễn
5 tháng 10 2019 lúc 16:53

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{z}{c}\)

\(\Leftrightarrow x:y:z=a:b:c\)

Edogawa Conan
5 tháng 10 2019 lúc 16:57

Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{c^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}}\) => \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\) => \(\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\) => \(\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\) => \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)=> \(a:b:c=x:y:z\)

Công Chúa Ma Kết
Xem chi tiết
Nhân Tư
Xem chi tiết
Yen Nhi
27 tháng 4 2022 lúc 22:27

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(=\dfrac{a\left(bz-cy\right)}{a.a}=\dfrac{b\left(cx-az\right)}{b.b}=\dfrac{c\left(ay-bx\right)}{c.c}\)

\(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-baz}{b^2}=\dfrac{cay-cbx}{c^2}\)

\(=\dfrac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}\)

\(=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{cx-az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\dfrac{c}{z}=\dfrac{a}{x}\\\dfrac{ay-bx}{c}=0\Rightarrow ay-bx=0\Rightarrow ay=bx\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

\(\Rightarrow a:b:c=x:y:z\)

Phan The Anh
Xem chi tiết
đỗ ngọc ánh
Xem chi tiết