cho a,b thuộc N* . a > 2 , b > 2 . Chứng tỏ a+b < a.b (. là dấu nhân )
Cho a,b thuộc N*;a>2;b>2.Chứng tỏ rằng a+b<a.b
a>2=>a.b>2.b
b>2->a.b>2.a
->ab+ab>2b+2a
->2ab>2(a+b)
->ab>a+b
Cho a,b thuộc N;a>2,b>2.Chứng tỏ rằng a+b<a.b.
Cho a,b thuộc N. Chứng tỏ a.b.(a+b) chia hết cho 2
Cho a > 2 , b > 2 và a,b thuộc N. Chứng tỏ rằng a+b < a.b
cho a,b thuộc N* ;a>2 ;b>2
Chứng tỏ rằng a+b<a.b
cho a,b thuộc N* ;a>2 b>2
chứng tỏ a+b<a.b
a > 2 ; a thuộc N*
=> ab > 2b
b > 2; b thuộc N*
=> ab > 2a
=> ab + ab > 2a + 2b
=> 2ab > 2(a + b)
=> ab > a + b (đpcm)
Cho a,b thuộc N*; a>2;b>a
Chứng tỏ rằng a+b<a.b
Xét hiệu a+b-ab=-(a-1)(b-1)+1
Vì \(\hept{\begin{cases}a>2\\b>a\end{cases}\Rightarrow\hept{\begin{cases}a-1>1\\b-1>1\end{cases}}}\)
=>(a-1)(b-1)>1
=>-(a-1)(b-1)<-1
=>-(a-1)(b-1)+1<0
=>-(a-1)(b-1)<0
=>a+b-ab<0
=>a+b<ab (đpcm)
cho a,b thuộc N*;a bé hơn 2, b bé hơn 2. Chứng tỏ rằng:a+b bé hơn a.b
a + b < a . b
=> a + b là 1 tổng và 1 tổng thì ta có : a+ b = a+ b
=> a . b là 1 tích và 1 tích thì sẽ đc nhân nhiều lần lên phụ thuộc vào phép tính( a,b thuộc N*),ta có : a .b = a + a + a +...
=> Ta có ví dụ : a= 5;b=3.
=> 5 + 3 < 5 . 3
=> 8 < 15.
=> a+b<a.b
Cho a thuộc tập hợp N, a>2; b>2
chứng tỏ rằng a+b > a.b
Em xem lại đề bài và tham khảo bài làm của bạn Nguyễn LInh Châu nhé:
Câu hỏi của Nguyễn Trọng Hoàng Nghĩa - Toán lớp 6 - Học toán với OnlineMath
\(a\)>\(2\)
\(a=2+k\);\(k\)>\(0\)
\(b\)>\(2\)
\(b=2+q\);\(q\)>\(0\)
\(\Rightarrow a+b=2+k+2+q=4+k+q\)
\(a\cdot b=\left(2+k\right)\cdot\left(2+q\right)=4+2k+2q+k\cdot q\)
\(\Rightarrow a+b\)>\(a\cdot b\)\(\left(4=4\right)\);\(k\)<\(2k\);\(q\)<\(2q\);\(k\cdot q\)>\(0\)
\(TH1:a\)<\(b\)
\(\Rightarrow a+b\)<\(b+b=2b\)<\(a\cdot b\);\(a\)>\(2\)
\(TH2:a=b\)
\(\Rightarrow a+b=2b\)<\(a\cdot b\);\(a\)>\(2\)
\(TH3:a\)>\(b\)
\(\Rightarrow a+b\)>\(a+a=2a\)<\(a\cdot b\);\(b\)>\(2\)