Tìm số tự nhiên n khác 0 biết 2025n+2116 và 2116n+2025 đều là số chính phương.
Ai giúp mình nào!!!
Tìm số tự nhiên n khác 0 biết 2025n+2116 và 2116n+2025 đều là số chính phương.
Ai giúp mình với mình like cho
bài này mà học lớp 1 trời ạ mình lạy luôn khó quá
Tìm số tự nhiên n biết :2^n+1;3^n+1 đều là số chính phương
các bạn giúp mình nha !
1, tìm số chính phương có 4 chữ số, chữ số hàng đơn vị khác 0, biết số tạo bởi 2 chữ số đầu và số tạo bti 2 chữ số cuối đều là số chính phương
2, Cho n là số tự nhiên lẻ chia hét cho 3. Chứng minh rằng : 2n-1,2n,2n+1 không là số chính phương
3, tìm các số nguyen dương x,y đẻ x^2 + 3y và y^2 + 3x là các số chính phương
4, chứng minh rằng : tồn tại 4 số tự nhiên khác nhau a,b,c,d để a^2+2cd+b^2 và c^2+2ab+d^2 đều là các số chính phương
HELP MEEEEEE
cho n là số tự nhiên khác 0 và 2n +1 là số chính phương . chính minh n chia hết cho 12
Cá bạn giải giúp mình nhanh nhé, cảm ơn trước ạ!
Bài 1 : Tìm p sao cho p và p4+2 đều là số nguyên tố .
Bài 2 : TÌm các số tự nhiên n khác 0 sao cho x = 2n+2003 và y = 3n+2005 đều là số chính phương .
p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3
giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương
Đặt 2n + 2003 = k2 (1) và 3n + 2005 = m2 (2) (k, m \(\in\) N)
trừ theo từng vế của (1), (2) ta có:
n + 2 = m2 - k2
khử n từ (1) và (2) => 3k2 - 2m2 = 1999 (3)
từ (1) => k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1) 2 - 2m2 = 1999
<=> 2m2 = 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2 (4)
vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) => m2 chia 4 dư 2, vô lý
vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán
Chứng minh rằng nếu 2n+1 và 3n+1 ( với n là số tự nhiên khác 0 ) đều là số chính phương thì n chia hết cho 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
tìm số tự nhiên n biết
a, n+12 và n-12 là số chính phương
b, n2+2014 là số chính phương
c, n+37 và n+9 là số chính phương
d, n+83 và n-17 là số chính phương
giúp mình với các bạn ơi
tìm n là số tự nhiên có 2 chữ số. tìm n biết n+4 và 2n đều là các số chính phương
cho a là số tự nhiên nhỏ nhất khác 0 . Biết rằng a nhân với 5/12 và 10/21 ta đều được kết quả là số tự nhiên . hỏi a là số nào ?
bạn nào giúp minh mình sẽ kick ngay nhé thanks
theo đề thì ta suy ra
a*5 chia hết cho 12
a*10 chia hết cho 21
vì 5 ko chia hết cho 12 và 10 ko chia hết cho 21 nên suy ra a là BCNN(12;21)
cách tìm BCNN nhanh:
công thức: BCNN(a,b)=a* thừa sổ riêng của b
12=22*3
21=3*7
=>BCNN(12;21)=12*7=84
a=84
a bang 84 vi UCLN(12,21) la 84 thi a nhan voi 5/12 bang 5,a nhan voi 10/21 bang 10
mk có cho bn cách tính BCNN nha ko dùng máy tính nha