CMR: Có thể tìm được số có dạng 20152015...201500...0 chia hết cho 2016
CMR: Có thể tìm được số có dạng 20152015...201500...0 chia hết cho 2015
2015...201500...00=20152015...2015.1000000...0
2015...2015 chia hết 2015
suy ra 2015...2015.1000...0 chia hết 2015
2015...201500...0 chia hết 2015
Chứng minh rằng: có thể tìm được số có dạng 20152015...201500...0 chia hết cho 2015
Chứng minh rằng tồn tại số có dạng :
a) 201520152015....201500....000 chia hết cho 2016
b) 201620162016...2016 chia hết cho 2017
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
chứng minh số có dạng 20152015...000 chia hết cho 2016
chứng minh rằng tồn tại số có dạng :20152015...201500000 chia hết 2016
CMR có thể tìm được một số tự nhiên có dạng 20152015...2015\(⋮\)41
chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia het cho 41
Chọn 41 số dạng 20152015...2015 khác nhau.
Nếu có 1 số trong nhóm chia hết cho 41. => đpcm
Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.
Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.
Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.
Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.
tui mới học lớp 6 thui mà, nguyên lý Directle là gì sao tui bt dc
CMR luôn tìm được số có dạng 2016201620162016...2016( gồm các số 2016 viết liên tiếp nhau) chia hết cho 2017
bài 1: Có hay không một số coa dạng 20152015....2015000...0000 chia hết cho 2016
bài 2:với mọi số nguyên dương n thì 11^(n+2) + 12^(2n+1) chia hết cho 133