chứng minh rằng: tích ba số tự nhiên liên tiếp đều chia hết cho 6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) chứng minh rằng trong ba số tự nhiên liên tiếp chắc chắc chắn có một số chia hết cho 2 và một số chia hết cho 36
b) chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho
Chứng minh rằng tích ba số tự nhiên liên tiếp thì chia hết cho 6
Trong ba số nguyên liên tiếp có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\)mà \(\left(2,3\right)=1\)nên tích ba số nguyên liên tiếp chia hết cho \(2.3=6\).
1: Chứng minh rằng: tích 2 số tự nhiên liên tiếp chia hết cho 2
2: Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 6
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
1.trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2=> tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
2.trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2 và 1 số chia hết cho 3 mà (2,3)=1=>tích của 3 số tự nhiên liên tiếp luôn chia hết cho 2.3=6
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
Chứng minh rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6.
trong 3 số tự nhiên liên tiếp sẽ có 1 số chẵn nên :
=> tích của 3 số tự nhiên liên tiếp chia hết cho 2 (1)
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3 nên:
=> tích của 3 số tự nhiên liên tiếp chi a hết cho 3 (2)
từ (1) và (2) ta có :
tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 6 vì 6 = 2 . 3
Gọi số đó là A
Trong 3 số tự nhiên liên tiếp luôn có nhiều hơn hoặc bằng 2 số chẵn=>A chia hết cho 2 (1)
Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3=>A chia hết cho 3 (2)
Từ (1)(2) mà 3.2=6=>A chia hết cho 6(đpcm)
Chứng minh rằng: Tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
n(n+1)(n+2)
Với n=2k
2k(2k+1)(2k+2) chia hết 2
Với n=2k+1
(2k+1)(2k+2)(2k+3)=(2k+1).2(k+1)(2k+3) chia hết 2
=> n(n+1)(n+2) chia hết 2 (1)
Với n=3k
3k(3k+1)(3k+2) chia hết 3
Với n=3k+1
(3k+1)(3k+2).3(k+1) chia hết cho 3
Với n=3k+2
(3k+2)(3k+3)(3k+4) chia hết 3
=> n(n+1)(n+2) chia hết cho 3 (2)
(1);(2)=> n(n+1)(n+2) chia hết 6
TL:
Gọi 3 số tự nhiên liên tiếp là a;a+1 và a+2
Tích 3 số đó là: a(a+1)(a+2)= a+a+a+1+2
= 3a+ 3
Vì 3a chia hết cho3; 3 chia hết cho 3 nên 3a+3 chia hết cho 3
=> a(a+1)(a+2) chia hết cho 3
- Nếu a chẵn thì a(a+1)(a+2) chia hết cho 2
-Nếu a lẻ thì a+1 chia hết cho 2=> a(a+1)(a+2)
Vậy a(a+1)(a+2) chia hết cho 2
Mặt khác (2,3)=1 nên a(a+1)(a+2) chia hết cho 6
HT!~!
CHỨNG MINH RẰNG TÍCH CỦA BA SỐ TỰ NHIÊN LIÊN TIẾP LÀ MỘT SỐ CHIA HẾT CHO 6
Tích Hai số tự nhiên liên tiếp chia hêt cho 2
Tích của 3 số tự nhiên liên tiếp chia hết cho 3
(2;3) =1
2*3=6
Nên tích của ba số tự nhiên liên tiếp chia hết cho 6
trong 3 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2 và 1 số chia hết cho 3 vì 2 và 3 nguyên tố cùng nhau nên tích 3 số tự nhiên liên tiếp chia hết cho 6
chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 3 và 6