1x2+2x3+3x4+...+1999x2000
2/1x2+2/2x3+2/3x4+....+2/1999x2000
easy mà
=2.(1/1.2+1/2.3+...+1/1999.2000)
=2.(1/1-1/2+1/2-1/3+....1/1999-1/2000)
=2.(1-1/2000)
=2.1999/2000
=3998/2000=... tự rút gọn :D
Tính: S = 1x2-2x3+3x4-4x5+5x6-6x7+...-1998x1999+1999x2000
1/1x2+1/2x3+1/3x4+1/24x25
1/1x2+ 1/2x3+1/3x4+1/24x25
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100))
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
haizzz đáng tiếc tôi muốn ns là: ko bao f và đừng mong chờ OK
1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
Lên Qanda mà hỏi
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100))
1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100