Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhiều chỵn
Xem chi tiết
Võ Hoàng Hiếu
Xem chi tiết
Hà Minh Hiếu
15 tháng 6 2017 lúc 7:43

A B C D I E M O N F

LẤY I LÀ TRUNG ĐIỂM CỦA BC, O LÀ TRUNG ĐIỂM CỦA AC

XÉT TAM GIÁC MAN VÀ TAM GIÁC IOF CÓ

OI = AB/2=AE/2=AM

OF=AN ( CÚNG LÀ ĐƯƠNG CAO CỦA TAM GIÁC ĐỀU)

GÓC FOI = GÓC MAN = 90 + GÓC A

=> TAM GIÁC MAN = TAM GIACC IOF ( C.G.C)

=> FI = DM

=> GÓC OFI = GÓC MNA

=> GÓC MND = GÓC ANC - GÓC MNA - GÓC DNC

                     = 90 - GÓC OFI - GÓC IFC

                    = 90 - 30 = 60

LẠI CÓ FI = ND/2

           FI = MD

=> MD = ND/2

MÀ GÓC MND = 60

-> TAM GIÁC MND LÀ NỬ TAM GIÁC ĐỀU

=> DM VUÔNG GÓC DN

                   

Arima Kousei
7 tháng 10 2018 lúc 20:32

Hà Minh Hiếu Good !  

nguyễn phương lan
5 tháng 1 2020 lúc 17:55

????????????????????????????????????????

☺️ ☺️ ☺️ ☺️ ☺️ ☺️

Nguyen Dinh Dung
Xem chi tiết
Nguyễn Thị Lam
Xem chi tiết
yennhi tran
Xem chi tiết
Nguyễn Tất Đạt
30 tháng 6 2018 lúc 14:37

A B C E F H N G

Trên nửa mặt phẳng bờ là NF, dựng tam giác đều NFG. Nối G với A và H.

Ta có: ^CFN + ^AFN = 600; ^AFG + ^AFN = 600 => ^CFN = ^AFG.

Xét \(\Delta\)NFC và \(\Delta\)GFA có: FC=FA;  ^CFN=^AFG; FN=FG => \(\Delta\)NFC = \(\Delta\)GFA (c.g.c)

=> CN=AG (2 cạnh tương ứng) . Mà CN=BN nên BN=AG.

Lại có: \(\Delta\)ABE là tam giác đều với trực tâm H => ^ABH=300

=> ^HBN = ^ABC + ^ABH = ^ABC +300 (1)

^HAG = 3600 - (^FAG + ^FAC + ^BAC + ^HAB) (*)

Do \(\Delta\)NFC=\(\Delta\)GFA => ^FAG = ^FCN (2 góc tương ứng) => ^FAG = ^ACB +600

Dễ thấy: \(\Delta\)ACF đều => ^FAC = 600;   \(\Delta\)ABE đều, trực tâm H => ^HAB = ^ABH = 300

Thay hết vào (*), ta được: ^HAG = 3600 - (^ACB + 600 + 600 + ^BAC + 300)

=> ^HAG = 2100 - (^BAC + ^ACB) = 1800 - (^BAC + ^ACB) +300 = ^ABC + 300

=> ^HAG = ^ABC + 300 (2)

Từ (1) và (2) => ^HBN = ^HAG. 

Xét \(\Delta\)BHN và \(\Delta\)AHG có: BH=AH (Dễ c/m); ^HBN = ^HAG; BN=AG (cmt)

=> \(\Delta\)BHN=\(\Delta\)AHG (c.g.c) => HN=HG (2 cạnh tương ứng).

Xét \(\Delta\)HNF và \(\Delta\)HGF: GN=HG; FN=FG; HF chung => \(\Delta\)HNF=\(\Delta\)HGF (c.c.c)

=> ^HFG = ^HFN = ^GFN/2 = 600/2 = 300; ^NHF = ^GHF

\(\Delta\)BHN=\(\Delta\)AHG => ^BHN = ^AHG . Mà ^BHN + ^NHA = ^BHA = 1200

=> ^AHG + ^NHA = ^NHG = 1200 => ^NHF = ^GHF = ^NHG/2 = 600

Vậy \(\Delta\)FNH có: ^HFN = 300; ^NHF = 600 =>  ^FNH = 900.

Còn 1 cách khác ở trong sách Nâng cao phát triển Toán 7 - T2 nhé!

Mình nghĩ thêm cách này để bạn tham khảo ^-^

Lê Nhật Khôi
30 tháng 6 2018 lúc 12:58

Cho cái link này không bít có đúng không:

https://cunghoctot.vn/forum/topic/1003161

Chia ra 3 trường hợp .....

huyền trang
Xem chi tiết
Trần Vân Anh
Xem chi tiết
Trần Lê Thiên Vương
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết