Tìm n thuộc Z có giá trị nhỏ nhất sao cho:(2.n+1) chia hết cho (n+2)
P/s: giúp mik với hếy!
cảm ơn mấy bn nhìu :V :V :V
Chứng minh với mọi n thuộc Z thì:
a, n^7 -n chia hết cho 7
b, 2n^3+3n^2+n chia hết cho 6
c, n^5-5n^3+4n chia hết cho 120
d,n^3-3n^2-n+3 chia hết cho 48
CÁC BN GIÚP MIK VS NHA!!! CẢM ƠN NHÌU NHÌU NEK!!!>3<!!!
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
Mik cảm ơn bn nhìu nha!!!!^-^!!!
Biết trung bình cộng của a và 9a chia hết cho 3 . Vậy giá trị nguyên dương nhỏ nhất của a là....
Mấy bn giúp mik vs ! Cảm ơn nha !!! Mơn nhìu lắm
Tìm n thuộc N sao cho (2.n+1) chia hết cho (n+2)
P/s: các bn giúp mik với nhé
Mọi người giải giúp em mấy bài này với . Xin cảm ơn ạ ...
Bài 1 : Cho m , n thuộc Z sao cho m.n+1 chia hết cho 24 . CMR : m+n chia hết cho 24 .
Bài 2 : Tìm p thuộc P sao cho 2p+p2 thuộc P
1. Tìm n thuộc Z để:
a) n+6 chia hết cho n+4
b) 2n+3 chia hết cho n-2
c) 3n+1 chia hết cho 11-2n
d) n2+8 chia hết cho n-7
2. Tìm x, y sao cho:
a) (x+1)y-5=4
b) xy-x+y=0
Các bạn giúp mình nhé mình fải đihọc. Cảm ơn nhìu nhìu
bài 1: tìm n thuộc Z biết n2+n-17 là B(n+5)
bài 2:tìm n thuộc Z để 8n-9/2n+5 nguyên
bài 3:cmr : vs mọi số nguyên dương n thì :A=n3+5n chia hết cho 6
bài 4:tìm n thuộc Z sao cho: a) 2n+5 chia hết cho 2n+2/ b)n2+3n -5 là B(n-2)
giúp mk vs nhé các bn , mk cần gấp lắm lắm...ai làm nhanh+ddung mk tick cho, mai mk phải nộp rùi. ghi rõ cách giải và làm đầy đủ nhé, cảm ơn nhìu...
Chứng minh biểu thức (n-1).(n+4)-(n-4).(n+1) luôn chia hết cho 5 với n thuộc Z
CÁC BN GIÚP MIK VS NHEN!!! THANK U NHÌU NHÌU !!! ^,^!!!
Theo mình là đề bài sai.Giả sử nếu n = 2 thì biểu thức = 1.6-(-2).3 = 12 không chia hết cho 5
Theo mình phải là CHIA HẾT CHO 6
Câu này khá dễ bạn ạ
(n-1)(n+4)-(n-4)(n+1)
= (n^2+3n-4)-(n^2-3n-4)
=6n luôn chia hết cho 6 với n thuộc Z ^_^
Ukm. mik lỡ nhập đề bài sai sorry bạn nha!!!
cảm ơn bạn nhìu
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài 1: chứng minh rằng: V với y thuộc N thì 5y+2và 3y+1 là 2 số nguyên tố cùng nhau
Bài 2 : (a,b)=n+1 và a.b=11n+14 với n thuộc N
Bài 3 : cho a,b thuộc N và a>b
chúng minh rằng nếu a+2b chia hết cho 7 thì (3a-b)(5a+3b+7)chia hết cho 98
AI TRẢ LỜI NHANH MÌNK TICK CHO NHÉ
CẢM ƠN NHÌU