TÌM X, Y , Z \(\frac{x}{8}=\frac{y}{64}=\frac{z}{216}v\text{à}2x^2+2y^2-z^2=1\)
Tìm x , y , z : \(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(4x=3y;5y=3zv\text{à}2x-3y+z=6\)
c) \(\frac{x}{8}=\frac{y}{64}=\frac{z}{216}v\text{à}2x^2+2y^2-z=1\)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=> \(\frac{x}{9}=3\Rightarrow x=27\)
\(\Rightarrow\frac{y}{12}=3\Rightarrow y=36\)
\(\Rightarrow\frac{z}{20}=3\Rightarrow z=60\)
các câu còn lại bạn làm tương tự như thế nhé
Tìm x, y, z
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}v\text{à}2\text{x}+3y-z=186\)
b, 3x=2y ; 7y = 5z và x-y+z = 32
c,\(\frac{2\text{x}}{3}=\frac{3y}{4}=\frac{4\text{z}}{5}v\text{à}x+y+z=49\)
d, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
e, x+y=x:y= 3.(x-y)
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
a.\(3\left(x-1\right)=3\left(y-2\right);4\left(y-2\right)=3\left(z-3\right)v\text{à}2x+3y-z=-250\)
b.\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
giải ra giúp mik nha!!!!!!!!!
b. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Theo t/c dảy tỉ số = nhau:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=\frac{1}{4}.4=1=1^2=\left(-1\right)^2\Rightarrow x=\)+1
=> \(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=\frac{1}{4}.16=4=2^2=\left(-2\right)^2\Rightarrow y=\)+2
=> \(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=\frac{1}{4}.36=9=3^2=\left(-3\right)^2\Rightarrow z=\)+3
Vậy có 2 cặp (x;y;z) là: (1;2;3) và (-1;-2;-3).
a. Áp dụng t/c tỉ số = nhau làm tương tự.
Tìm x,y,z biết \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\) và \(2x^2+2y^2-z^2=1\)
\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\Leftrightarrow3.\frac{x}{8}=3.\frac{y}{64}=3.\frac{z}{216}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{64}=\frac{z}{216}\)
\(\Leftrightarrow\frac{x^2}{64}=\frac{y^2}{4096}=\frac{z^2}{46656}\)
\(\Leftrightarrow\frac{2x^2}{128}=\frac{2y^2}{8192}=\frac{z^2}{46656}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
........
Tìm x,y,z biết: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\) và \(2x^2+2y^2-z^2=1\)
tìm x,y,z biet
\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\) và \(2x^2+2y^2-z^2=1\)
Tìm x,y,z biết: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
và 2x2+2y2+z2=1
Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Leftrightarrow x=\frac{y}{8}=\frac{z}{27}\)
\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)Thay vào ta được:
\(2x^2+2\left(8x\right)^2-\left(27x\right)^2=1\)
\(\Leftrightarrow-559x^2=1\)
\(\Leftrightarrow x^2=\frac{-1}{559}\)
\(\Leftrightarrow\)Vô nghiệm.
Phạm Nguyệt Minh Băng làm sai từ dòng 4 trên xuống
Bài giải
\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Rightarrow\text{ }x=\frac{y}{8}=\frac{z}{27}\)\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)
Thay vào đẳng thức ta có :
\(2x^2+2\left(8x\right)^2+\left(27x\right)^2=1\)
\(2x^2+128x^2+729x^2=1\)
\(x^2\left(2+128+729\right)=1\)
\(859x^2=1\)
\(x^2=\frac{1}{859}\)
\(\Rightarrow\text{ }x\in\varnothing\)
cảm ơn các bạn rất nhiều
Tìm x ; y ;z biết
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và \(x^2-y^2=-80\)
b) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và \(2x^2+2y^2-z^2=1\)
a) vì x/2=y/3=> x/8=y/12
y/4=z/5=>y/12=z/15
từ hai cái trên nên x/8=y/12=z/15=> x^2/64=y^2/144=z^2/225 và x^2-y^2=-80
Áp dụng t/c dãy tỉ số bằng nhau ta được
x^2/64=y^2/144=z^2/225=x^2-y^2/64-144=-80/-80=1
+) x=8
+)y=12
+)z=15
cái dưới chỉ cần nhân hệ số vào và làm tương tự nhé e.
\(a,\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-80\)
Ta có : \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}\)
Mà \(x^2-y^2=-80\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}=\frac{x^2-y^2}{64-144}=\frac{-80}{-80}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{64}=1\\\frac{y^2}{144}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm8\\y=\pm12\end{cases}}\)
\(b,\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Leftrightarrow\left[\frac{x}{2}\right]^3=\left[\frac{y}{4}\right]^3=\left[\frac{z}{6}\right]^3\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{z^2}{36}=\frac{2x^2+2y^2-z^2}{8+32-36}=\frac{1}{4}\)
Vậy : \(\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}\)
Tìm x,y,z biết:
\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)và \(^{2x^2+2y^2-z^2=1}\)
Đáp án:
x = -4792.
y = -599.
z = \(\frac{-4792}{27}\).
Trường học FBS - về đầu tư thông minh |
Đến với thế giới đầu tư và thay đổi cuộc sống của bạn mãi mãi! fbs.expert |