tìm n thuộc N để (2^2^n + 5) là số nguyên tố
tìm n thuộc N để (2^2^n + 5) là số nguyên tố
n bằng 0 nha bn
hok tốt
tìm n thuộc N để (2^2^n + 5) là số nguyên tố
bài này mình áp dụng 1 công thức của lớp 8 để làm dễ hơn, công thức này đối với bài nâng cao thì có thể áp dụng vào lớp 6,7 nha, đó là công thức an-bn chia hết cho a+b ( n là số tự nhiên chẵn nha a,b nguyên)
ta có: \(2^{2^n}+5>5\left(\forall n\right)\)
\(2^{2^n}+5=2^{2n}+6-1=\left(2^{2n}-1\right)+6\)
ta có: 22n-1=22n-12n chia hết cho (2+1) (do 2n chẵn)
suy ra 22n-1 chia hết cho 3
vì 22n-1 chia hết cho 3, 6 chia hết cho 3 suy ra 22n-1+6 chia hết cho 3 suy ra \(2^{2^n}+5\) chia hết cho 3 mà \(2^{2^n}+5\)>5 suy ra \(2^{2^n}+5\)là hợp số suy ra ko tìm đc n để \(2^{2^n}+5\)là số nguyên tố
1.Tìm n thuộc n để (n+3)(n+1) là số nguyên tố
2.Tìm p để p+2 và p+94 là số nguyên tố
ta có (n+3)(n+1) là số nguyên tố \(\Leftrightarrow\orbr{\begin{cases}n+3=1\\n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=1-3\\n=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=-2\\n=0\end{cases}}}\)
Mà \(n\in N\)
\(\Rightarrow\)n=0
Tìm n thuộc P để :
a, n + 2 ; n + 10 là số nguyên tố
b, n + 2 ; n + 6 ; n + 8 ; n + 14 là số nguyên tố
a, Tìm n để : (n - 2).(n^3 + 2) là số nguyên tố.
b, Tìm n thuộc N để : n^2 + 8 / n + 3 là số nguyên tố.
Bạn nào làm đúng tớ tick !
tìm n thuộc N để :(n-2)(n^2+n-1) là số nguyên tố
tìm số n thuộc N để n^2 + 6n là số nguyên tố
Ta có: \(n^2+6n=n\left(n+6\right)\)
Vì SNT chỉ có 2 ước dương duy nhất là 1 và chính nó nên ta xét các TH sau:
+ Nếu: \(n=1\Rightarrow n+6=7\)
=> \(n^2+6n=7\left(tm\right)\)
+ Nếu: \(n+6=1\Rightarrow n=-5\) (không thỏa mãn vì âm)
Còn nếu xét các TH khác ta luôn có thể thấy \(n\left(n+6\right)\) là tích 2 STN cách nhau 6 đơn vị
=> không thể là SNT
Vậy n = 1