\(x^4+1\)
dùng phương pháp thêm bớt cùng một hạng tử để phân tích đa thức thành nhân tử
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
a)x^4+1
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-2x^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
Phân tích đa thức thành nhân tử:
x^8+x^4+1 bằng phương pháp thêm bớt hạng tử x^2
\(x^8+x^4+1\)
\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)
\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp tách hoặc thêm bớt hạng tử: x^3 - 3x^2 - 4
Phân tích đa thức thành nhân tử (Dùng phương pháp thêm bớt hạng tử)
\(2x^4+128y^4\)
\(2x^4+128y^4\)
\(=2x^4+2.\left(8y^2\right)^2\)
\(=2\left[x^4+\left(8y^2\right)^2\right]\)
\(=2\left[x^4+2x^28y^2+\left(8y^2\right)^2-2x^28y^2\right]\)
\(=2\left[\left(x^2+8y^2\right)^2-\left(4xy\right)^2\right]\)
\(=2\left(x^2-4xy+8y^2\right)\left(x^2+4xy+8y^2\right)\)
2x4+128x^4
2x^4+2.(8y^2)^2
2.(x^4+(8y^2)^2)
2.((x^2)^2+2.x^2.8y^2+(8y^2)^2-2x^2.8y^2)
2.(x^2+8y^2)-(4.x.y)^2
2.((x^2+8y^2)-4xy).((x^2+8y^2)+4xy)
2.(x^2+8y^2-4xy).(x^2+8y^2+4xy)
Phân tích đa thức thành nhân tử
Phương Pháp thêm bớt hạng tử
x5+x+1
Ta có : x5 + x + 1
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .
Ta có : x5 + x + 1
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .
Phân tích đa thức thành nhân tử(Phương pháp thêm bớt hạng tử):
a)x^4+64
b)4x^4+1
c)64x^4+1
x4 + 64
= x4 + 16x2 + 64 - 16x2
= (x2 + 8)2 - (4x)2
= (x2 - 4x + 8)(x2 + 4x + 8)
4x4 + 1
= 4x4 + 4x2 + 1 - 4x2
= (2x2 + 1) - (2x)2
= (2x2 - 2x + 1)(2x2 + 2x + 1)
64x4 + 1
= 64x4 + 16x2 + 1 - 16x2
= (8x2 + 1)2 - (4x)2
= (8x2 - 4x + 1)(8x2 + 4x + 1)
phân tích đa thức sau thành nhân tử bằng phương pháp thêm bớt một hạng tử: (1 + x2)2 - 4x(1 - x2)