Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Khôi Nguyên
Xem chi tiết
Phạm Vân
19 tháng 8 2021 lúc 21:31

16p+1,16p,16p−116p+1,16p,16p−1là ba số nguyên liên tiếp nên 11trong 33số đó chia hết cho 33.

Có 16p+116p+1là số nguyên tố nên không chia hết cho 33.

16p16pkhông chia hết cho 33do 16⋮/316⋮̸3pplà số nguyên tố 

(nếu p=3p=3thì 16p+1=4916p+1=49không là số nguyên tố) 

do đó 16p−116p−1chia hết cho 33do đó là hợp số.                                                                                            

Nhớ t.i.c.k mk nha

Khách vãng lai đã xóa
diem phuong
19 tháng 8 2021 lúc 20:58

hello ban ban ten gi

Khách vãng lai đã xóa
diem phuong
19 tháng 8 2021 lúc 21:32

ok ban

Khách vãng lai đã xóa
We Hate GĐM
Xem chi tiết
Nguyễn Thị Kim Anh
Xem chi tiết
Phạm  Nguyễn Trúc Ly
Xem chi tiết
nguyễn lê gia linh
Xem chi tiết
Thanh Thảo Lê
22 tháng 11 2017 lúc 22:43

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

Đàm Thị Thu Trang
7 tháng 11 2021 lúc 8:53

khó quá

mình cũng đang hỏi câu đấy đây

 

Tran Thi Thao Ly
Xem chi tiết
Nguyễn Hà Thảo Vy
14 tháng 12 2015 lúc 20:29

a)Xét P =5k ( vì P là số nguyên tố)

 P+2=7 ; P+6 = 11 ; P+8 =13 ; P +14=19 (T/m)

Xét P =5k+1( k thuộc N)

P+14=5k+1+14 = 5k+15 chia hết cho 5(ko t/m)

Xét P=5k+2 

P + 8=5k+10 chia hêt cho 5 ( ko t/m)

Xét P=5k+3

P+2=5k+3=5k+5 chia hết cho 5 ( ko t/m)

Xét  P = 5k+4

P+6 =5k+4+6=5k+10 chia hết cho 5 ( ko t/m)

Vậy P = 5

 bài a này mik còn có cách giải khác nhưng dài hơn . 

Nguyễn Hà Thảo Vy
14 tháng 12 2015 lúc 20:43

b) P là số nguyên tố > 3 nên  P có dạng : 3k+1 và 3k+2

TH1 : p= 3k+1 .Ta có:

2p+1 = 2(3k+1) = 6k+2+1 = 6k+3 chia hết cho 3 nên là hợp số ( loại)

TH2:p=3k+2 . Ta có:

2p+1 = 2(3k+2) = 6k+4+1=6k+5 ( là số nguyên tố theo đề bài ta chọn TH này)

Vậy 4p+1 = 4(3k+2)+1=12k+8+1 = 12k+9 . ta thấy 12k và 9 đều chia hết cho 3 nên(12k+9) là hợp số 

Do đó 4p+1 là hợp số ( đpcm)

mik làm bài a và b rùi,tick nhé

Trân Thị Hà Trang
Xem chi tiết
ngonhuminh
24 tháng 12 2016 lúc 21:36

p nguyên tố => 8p không chia hết cho 3(*)

(8p-1), (8p), (8p+1) là ba số tự nhiên liên tiếp => phải có 1 số chia hết cho 3

mà 8p (*) => (8p-1), (8p+1) phải có 1 số chia hết cho 3=> dpcm

Nguyễn Thị Ngọc Anh
Xem chi tiết
Phạm Ngọc Lê Phương
3 tháng 7 2016 lúc 8:25

bn tự vẽ hình nha

+) Tam giác AOB và AOD có chung chiều cao hạ từ A xuống BD => S(AOB)/ S(AOD)  = OB/OD

+) Tam giác COB và COD có chung chiều cao hạ từ C xuống BD => S(COB)/ S(COD) = OB/OD

=> S(AOB)/S(AOD) = S(COB)/ S(COD)

=> S(AOB). S(COD) = S(AOD).S(COB)

=> S(AOB).S(BOC).S(COD). (DOA) = [S(AOD).S(COB)]2 là số chính phương Vì S(AOD) và S(COB) nguyên 

=> đpcm 

Nguyen Nguyen
Xem chi tiết
Uzumaki Naruto
14 tháng 9 2016 lúc 21:00

 Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2

Ta có:

k2+(k+1)2+k2.(k+1)2

=k2+k2+2k+1+k4+2k3+k2

=k4+2k3+3k2+2k+1

=(k2+k+1)2

=[k(k+1)+1]2 là số chính phương lẻ.

buiduytrung
9 tháng 2 2020 lúc 17:44

làm nhanh Cho nick face thì làm

Khách vãng lai đã xóa
Nguyễn Xuân Phúc
9 tháng 3 2021 lúc 21:03

dm mày

Khách vãng lai đã xóa