Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vô Tâm
Xem chi tiết
kaito kid vs kudo shinic...
2 tháng 4 2016 lúc 20:42

Ta có : a+5b chia hết cho 7

=> 4.(a+5b) chia hết cho 5

=> 4a+20b chia hết cho 7

Mà 14a+ 21b chia hết cho 7

=> (14a+21b) - ( 4a+20b)chia hết cho 7

=> 10a+b chia hết cho 7

Đỗ Thị Thu Hương
Xem chi tiết
Lê Phương Thảo
22 tháng 2 2016 lúc 21:17

Chưa phân loại

Cre : Trần Thị Loan hoặc #OLM

Đỗ Thị Thu Hương
22 tháng 2 2016 lúc 21:29

Ta có :a+5b chia hết cho 7

\(\Rightarrow\)10* [a+5b] chia hết 7

Ta có 10*[a+5b]-[10a+b]

\(\Rightarrow\)10a+50b-10a-b

\(\Rightarrow\)49b

Vì 49 chia hết 7 nên 10a+b chia hết cho 7

Vậy ta có điều chứng minh

helloa4
Xem chi tiết
Đào Đình Phong
22 tháng 11 2021 lúc 10:29

sssssssssssss

Khách vãng lai đã xóa
helloa4
Xem chi tiết
o0o đồ khùng o0o
5 tháng 1 2017 lúc 9:11

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

nguyenvankhoi196a
6 tháng 11 2017 lúc 6:27

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

To Thi Bich Thao
29 tháng 7 2019 lúc 22:09

gbvn nngvjn

Nguyễn Xuân Qúy
Xem chi tiết
Hoàng Ngọc Anh
Xem chi tiết
Mai Ngọc
13 tháng 9 2015 lúc 10:26

Xét hiệu 5(10a+b) - (a+5b) = (50a+5b) - (a+5b)

                                        =49a chia hết cho 7

suy ra:5(10a+b) - (a+5b) chia hết cho 7

mà a+5b chia hết cho 7 nên 10a+b chia hết cho 7

 

vcnhmgyf
Xem chi tiết
Le Thi Khanh Huyen
23 tháng 2 2015 lúc 8:34

Ta có: 

a+5b chia hết cho 7

=>10.(a+5b)chia hết cho 7

=>10a+50b chia hết cho 7

=>(10a+b)+49b chia hết cho 7(1)

Mà 49 chia hết cho 7 nên 49b chia hết cho 7(2)

Từ (1)và(2), ta có: 10a+b chia hết cho 7

Vậy nếu a,b\(\in\)N và a+5b chia hết cho 7 thì 10a+b cũng chia hết cho 7.

 

nguyễn thùy linh
2 tháng 12 2017 lúc 12:32

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

Hoàng Thị Hải Yến
Xem chi tiết
Trần Hải Linh
Xem chi tiết
Nguyệt
17 tháng 9 2018 lúc 22:17

dễ lắm bn cứ nhân lên mk chỉ một abif r cứ dựa vào mà làm nhá

25.(3a+2b)+10a+b=85a+51b chia hết cho 17

vì 3a+2b chia hết cho 17 mà 25.(3a+2b)+10a+b=85a+51b chia hết cho 17=>10a+bchia hết cho 17