cho tam giác abc , 2 đường trung tuyến be , cf vuông góc với nhau tại h CM: Sabc =bc^2 . tanA
cho tam giác abc , 2 đường trung tuyến be , cf vuông góc với nhau tại h CM: Sabc =bc^2 . tanA
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB
cho tam giác ABC có 2 đường trung tuyến BE và CF vuông góc với nhau . Tính BC khi BE=6 và CF=9
cho tam giác abc cân tại a,2 đường trung tuyến be và cf cắt nhau tại g
a.c/m tam giác aeb=tam giác afc
b.c/m fe // bc
c.c/m ag vuông góc với bc
Cho tam giác ABC nhọn (AB>AC>BC) có BE là đường phân giác. Kẻ CF vuông góc với BE, AH vuông góc BE, CF cắt đường trung tuyến BD của tam giác ABC tại G. Chứng minh DF đi qua trung điểm của EG.
Cho tam giác ABC cân tại A, BE và CF là 2 đường trung tuyến của tam giác ABC, BE cắt CF tại O
a, Chứng minh: BE =CF
b, Chứng minh: AO vuông góc với BC
c, Biết AB=13cm;BC=10cm. Tính OB
a/ Giải thích thêm: Vì AB = AC (tam giác ABC cân tại A. Mà E là trung điểm AC;F là trung điểm AB => AF = BF = AE = EC)
Xét tam giác BAE và tam giác CAF có:
\(\hept{\begin{cases}\widehat{BAC}:chung\\AB=AC\left(gt\right)\\AE=AF\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta BAE=\Delta CAF\left(c.g.c\right)\)
\(\Rightarrow BE=CF\)
b/ Xét tam giác ABC có 2 đường trung tuyến BE;CF cắt nhau tại O
=> O là trọng tâm tam giác ABC
=> AO là đường trung tuyến thứ 3
=> AO đi qua trung điểm H của BC (Bạn bổ sung điểm H cho mình nhá - Cho dễ làm thôi)
Mà tam giác ABC cân tại A => AO vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow AO⊥BC\)tại H
c/ Vì H là trung điểm BC => HB = HC = BC:2 = 10 : 2 = 5 (cm)
Xét tam giác ABH vuông tại H có:
\(AH^2+BH^2=AB^2\left(pytago\right)\)
\(AH^2+5^2=13^2\)
\(\Rightarrow AH^2=13^2-5^2=169-25=144\)
\(\Rightarrow AH=\sqrt{144}=12\left(cm\right)\)
Vì O là trọng tâm của tam giác ABC => \(OH=\frac{1}{3}AH\Rightarrow OH=\frac{1}{3}.12=4\left(cm\right)\)
Xét tam giác BOH vuông tại H có:
\(BH^2+OH^2=BO^2\left(pytago\right)\)
\(5^2+4^2=BO^2\)
\(25+16=BO^2\)
\(41=BO^2\)
\(\Rightarrow BO=\sqrt{41}\approx6,4\left(cm\right)\)
Cho tam giác ABC nhọn có các đường cao BE, CF cắt nhau tại trực tâm H; AM là đường trung tuyến. Đường thẳng EF và đường thẳng BC cắt nhau tại I. Chứng minh rằng IH vuông góc với AM.
cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q
1) CM: AH.AB=QA.BC
2)CM: BF.BA+CE.CA=BC2
3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Đường cao BE và CF, 2 tiếp tuyến tại B và C cắt nhau tại S, OS cắt BC tại M. AS cắt BC tại P, AM cắt EF tại N. CM NP vuông góc với BC